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Task-based Visual Interactive Modeling:
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Abstract—Visual analytics enables the coupling of machine learning models and humans in a tightly integrated workflow, addressing
various analysis tasks. Each task poses distinct demands to analysts and decision-makers. In this survey, we focus on one canonical
technique for rule-based classification, namely decision tree classifiers. We provide an overview of available visualizations for decision
trees with a focus on how visualizations differ with respect to 16 tasks. Further, we investigate the types of visual designs employed,
and the quality measures presented. We find that (i) interactive visual analytics systems for classifier development offer a variety of
visual designs, (ii) utilization tasks are sparsely covered, (iii) beyond classifier development, node-link diagrams are omnipresent,

(iv) even systems designed for machine learning experts rarely feature visual representations of quality measures other than accuracy.
In conclusion, we see a potential for integrating algorithmic techniques, mathematical quality measures, and tailored interactive
visualizations to enable human experts to utilize their knowledge more effectively.

Index Terms—Decision Trees, Rule-based Classification, Visual Analytics, Interactive Machine Learning, Interactive Model Analysis,

Survey, Visualization.

1 INTRODUCTION

NTERACTIVE machine learning has gained large interest

in the visualization and visual analytics community [1],
[2]. However, visualizations need to match the demands
of distinct analysis tasks [3]. Visual analytics promises to
provide exceptional matches by offering specialized, bi-
directional interfaces between analysts and machine learn-
ing models [4], [5]. From the assertions above we can expect
that distinct visualizations, suitable for different analysis
tasks, have been developed.

Visualization can facilitate steps along the analysis work-
flow in at least two ways: First, visualizing the data aids in
spotting outliers in training data and predictions. Second,
representing abstract models visually can support under-
standing [6]. For example, the data flow through a decision
tree can be explicated by augmenting nodes with class
distributions [7]. Additionally, visual analytics introduces
the direct manipulation of the underlying model to enable
the integration of domain knowledge in model construction,
for instance by adjusting split values of a decision tree [8].
Further, targeted what-if analyses facilitate the diagnosis of
malfunctions. Once sources of errors are identified, prob-
lems can be fixed and resulting changes can be observed
immediately. Within classification, several distinct analysis
tasks/steps can be identified, including model building and
refinement. All steps can benefit from the close involvement
of human analysts via visual interfaces.

As a result, (interactive) visualization, and visual analyt-
ics in particular, are central angles of attack for improving
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machine learning models [4], [5]. At the same time, visual-
ization can provide the foundation for the utilization of con-
structed models, as well as the extraction and communica-
tion of new insights gathered from modeling a classification
problem. Therefore, it is in the interest of the visualization
and visual analytics community to obtain an overview of
what kinds of visualizations are available for solving tasks
in interactive modeling and machine learning [9].

In this survey, we investigate whether visual designs
actually diversify and are tailored more closely to individual
tasks, or whether general-purpose visualizations flourish.
We restrict the survey to decision trees (and rule-based
classifiers), which are one of the canonical types of classifier
models. More details on this choice follow in Section 2.
This restriction lowers the barrier for readers who use this
survey as an entry to visual interactive modeling/machine
learning, and highlights a topic that has attracted repeated
interest by scholars and practitioners. Furthermore, the
specialized focus avoids potential confusion introduced by
mixing miscellaneous types of models. In consequence, it
is straightforward to compare differences between visual-
izations across tasks, while an abstract and model-agnostic
set of tasks enables the generalization of results. Future
evaluations may build on our survey in order to substantiate
design defaults and guidelines, which potentially can be
transferred to the visualization of other types of machine
learning models.

For clarification, we cover decision tree classifiers, which
we call decision trees throughout this paper (see also Sec-
tion 2). In the supplementary material, we provide a more
detailed primer for readers who are not familiar with us-
ing decision tree models for classification. Other notions
of the term “decision tree” as, for example, used in deci-
sion theory [11], [12], expert systems [13], [14], operations
research [15], or decision support systems using forecast-
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Fig. 1. Decision tree addressing a risk assessment task in an emergency
room. Based on observed symptoms, patients are classified into a
risk class: high risk or low risk. How a single patient is classified is
transparent as depicted by the blue trace representing one exemplary
patient, who is classified as having a low risk. Data by Breiman et al. [10].

ing [16] lie beyond this scope. Similarly, diagnostic trees
that depict class prevalence, and the Recall/Sensitivity and
Specificity of binary classifiers [17] share some aspects, but
cannot be reasonably covered. To complement our survey,
we present a brief comparison of these other meanings and
how visualizations have been part of their history in the
supplementary material.

In contrast to previous work on tree visualizations [18],
[19], [20], [21], [22], our focus is not only on the visual
designs. Instead, we focus on how visualizations match the
analysis tasks in classification. Endert et al. [23] present a
broad view on integrating machine learning into visual ana-
lytics for dimension reduction, clustering, classification, and
regression from the perspectives of models and frameworks,
techniques, and application areas. More generally, Jiang et
al. [9] summarize recent advances in interactive machine
learning. Finally, Sacha et al. [2] propose an ontology in-
tegrating visualization and machine learning. By contrast,
our survey details on available visual representations. The
survey of Liu and Salvendy [24] is most closely related
to our work. In 2007, they surveyed the aspects visualiza-
tion of tree models, visualization of tree evaluation, and
visual interactive tree construction. We present an updated
overview of the topic and consider a broader scope of
analysis tasks. Thereby, we advance the research on task-
based visualization and point out open questions about how
to tailor visualizations and visual analytics systems closely
to task demands. In particular, we contribute:

e asurvey of visualizations for decision tree classifiers,
« a categorization of visualizations from 152 publications
by 16 tasks and a comparison across these tasks, and
e an outlook on open questions and opportunities in
visual interactive modeling and machine learning.
Additionally, we include categorizations by the types of
visual designs employed, as well as the numeric quality
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Fig. 2. Rule set equivalent to the decision tree in Figure 1. The bars
at the right show how many of 100 patients each rule covers. Figure
inspired by Firnkranz et al. [25].

measures displayed, and briely discuss the lack of evalu-
ation studies. In the next section, we introduce the concept
of decision tree classifiers and provide details on our choice
for focusing on this type of models. In Section 3, we de-
scribe our methodology and present an overview of results.
Afterwards, we present detailed results grouped by three
perspectives, namely Classifier Development (Section 4),
Classifier Utilization (5), and the Descriptive Modeling of
Classification Processes (6). Based on these results, we dis-
cuss the role of visualization and visual analytics across
analysis tasks, visual designs and quality measures, in Sec-
tion 7. Resulting findings lead us to Open Questions and
Opportunities, which we present in Section 8.

2 DECISION TREES AND DECISION RULES

Compared to other types of classifier models, decision trees
closely resemble human reasoning. Hence, they are more
transparent and easier to understand [26]. Further, classi-
fication trees lend themselves to visual representation, for
example, as a node-link diagram in Figure 1, which supports
comprehensibility. In the training process, decision trees
require comparatively few observations and can be refined
interactively [27]. Decision trees can also be robust and
fast in application [28]. For instance, features are applied
sequentially and only need to be measured on demand.

Other types of machine learning classifiers, for instance,
based on deep learning [29], achieve promising results in
several scenarios [30]. However, their inherent lack of in-
terpretability can be problematic [31]. Thus, decision trees
are especially useful when human comprehension or inter-
action with the model is required. This includes applica-
tions in contexts that demand high levels of trust requiring
a thorough understanding and validation of classification
processes [32], the manual execution of a classification pro-
cedure to enable decision-making [33], as well as gaining
new insights from data [34].

For our survey, decision trees in combination with rule-
based classifiers are a perfect choice for several reasons. Be-
yond the more general positive aspects summarized above,
decision trees are a canonical part of most introductions
to classification with machine learning. Secondly, the com-
bination of a long history of investigation and up-to-date
research is beneficial. Finally, decision trees are widely used
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Fig. 3. Selection of eligible publications and categorization of visualizations. Eight main sources covering major visualization venues build the
foundation of our sample. Based on a keyword search and manual filtering, we derive an initial set of publications. Following references, we add
related publications. Additional publications from other sources such as colleagues’ recommendations broaden the sample. For the categorization
of visualizations, we distributed publications among the authors. We categorize each visualization based on targeted tasks (cf. [35], [36]), applied

visual designs (cf. [24]), and represented quality measures (cf. [3]).

in visualization and practical application. In this paper, we
consider rule-based classifiers as a subset of decision trees,
namely the non-branching trees with nodes created from
the list of rules. Alternatively, every tree can be represented
as a set of rules by formulating each path through the
tree as a rule. Classification rules are not to be confused
with association rules, which do not target classification [37].
Figure 2 shows a set of classification rules that is equivalent
to the decision tree in Figure 1. For example, the decision
rule “If Minimum systolic blood pressure > 91 and Patient’s Age
> 62.5 and Sinus tachycardia is not present, then High risk =
false” is equivalent to the path highlighted in Figure 1. The
bars on the right-hand side of Figure 2 depict how many
instances of the underlying dataset are classified by each
rule (i.e., their coverage).

Apart from extracting classification rules out of a classifi-
cation tree, they can also be induced directly from datasets.
This process is called rule set induction, for which a variety
of algorithms have been proposed [25]. Compared to the
exclusive paths in decision trees, in principle, decision rules
may overlap. As a result, multiple rules cover the same
instances, which demands for a mechanism to break ties of
overlapping rules predicting contrary classes. For example,
rules can be ordered as a list and the first rule that applies
determines the prediction [38], [39], which leads to a struc-
ture that, again, can be represented by decision trees.

3 METHODOLOGY AND OVERVIEW OF RESULTS

In this survey, we cover visualization journals such as
TVCG, CG&A, CGF, IV as well as the VIS, EuroVis, and Di-
agrams conferences. We complement the publications from
these established venues with publications from outside the
visualization and visual analytics community in order to
provide a broad overview. In particular, we apply a sam-
pling strategy as depicted in Figure 3, which also provides
an overview of the categorization process.

Main sources: We primarily examined eight sources
for publications. For a rough comparison, the numbers in
parenthesis below indicate the sizes of initial result sets
based on the search terms decision tree or rule-based classifica-
tion, and visual*. The wildcard term visual* covers relevant
terms such as visualization, visualisation, and visual analytics.
The number of publications that actually present visualiza-
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Fig. 4. Number of publications over time. The development of novel
visualization techniques in the 1980s and early 1990s [18], [40], [41],
[42] lays ground for the visualization of decision trees, starting in the
late 1990s. There are some user-based evaluations of single systems
and comparisons to automatic algorithms, but comparative experiments
between visual designs are rare. References to individual publications
can be found in Section 8 and the supplementary material.

tions of decision trees is smaller. Further, some publications
are listed in multiple of the following sources:

« IEEE Digital Library (87, including VIS, TVCG, CG&A)

o ACM Digital Library (75, including CHI, IUI)

 Eurographics Digital Library (50, including EuroVis,
CGF)

o Pubmed (211)

o PsycInfo (43)

o ArXiv (37)

o Information Visualization Journal (11)

o Diagrams Conference (5)

Then, we manually filtered publications based on contents,
keeping all that demonstrate a decision tree as described in
Section 2.

Additional Sources: Based on this initial set, we con-
sidered references that are related to the topic. We added
relevant referenced publications, which are not already in
our sample. Finally, we included additional publications
from other sources, for example, recommendations of col-
leagues. Obviously, we could not incorporate all published
visualizations of decision trees. Nonetheless, extending our
sample beyond visualization and visual analytics venues,
which we cover extensively, adds a valuable outlook and
records from (scientific) practice.


https://ieeexplore.ieee.org
https://dl.acm.org/
https://diglib.eg.org/
https://www.ncbi.nlm.nih.gov/pubmed
https://www.apa.org/pubs/databases/psycinfo
https://arxiv.org/
https://journals.sagepub.com/home/ivi
http://www.diagrams-conference.org
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Fig. 5. Structured overview of analysis tasks. Concept Introduction (gray, see Section 3.1) deals with educating novices about decision trees. In
predictive scenarios, there are two main stages. First, a classifier is developed (blue, Section 4), then, it is utilized in the target environment ( ,
Section 5). In descriptive scenarios (green, Section 6), decision trees are used to describe observed decision processes or black-box classifiers
as if they were decision trees. While some tasks like Model Building and Application can be (partially) automated, others including Understanding
heavily involve human analysts. The iterative Refinement is central to the interactive modeling process. Provenance and Monitoring run in parallel
to the main workflow, whereas Reporting and Assessment summarize the process/performance within a pre-defined period of time.
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Fig. 6. Number of publications per analysis task. Most visualizations
are designed for the steps in Classifier Development ( ). Except for
Presentation, tasks in Classifier Utilization ( ) and the Descriptive
Modeling of Classification Processes (green) are addressed rarely. Fur-
thermore, visualizations are commonly used to introduce the concept of
decision trees ( ). Task descriptions and individual references can be
found in Sections 3.1—6 and the supplementary material, respectively.

Publication Sample: Following this strategy, we iden-
tified 152 publications featuring visualizations of decision
trees. They were published between 1989 and January 2020,
with most published after the year 2005 (112 of 150, 75%,
2 NA). Figure 4 shows the distribution of publications in
our sample over time.

Categorization: Based on an additional screening, the
first author distributed publications such that each was
coded by one of the authors. We categorized each decision
tree visualization identified in the publications along three
dimensions: i) Analysis task, ii) Type of visual designs, and
iif) Quality measures displayed. Once all visualizations were
coded, the first author double checked codings. We present
results aggregated by publication, as observations on the
level of visualizations are heavily influenced by publications
that present many, identically designed, visualizations for
presenting and comparing multiple decision trees.

Analysis Tasks: In total, we distinguish between
16 analysis tasks. Most of these tasks directly relate to the
steps in Classifier Development and Classifier Utilization
(cf. [35], [36]). Further, we identified two tasks in the context
of the Descriptive Modeling of Classification Processes and
the Concept Introduction task. Figure 5 provides a struc-
tured overview. Detailed descriptions of individual analysis

tasks can be found below, in Sections 3.1-6. We assigned
visualizations designed for, or practically used for, dealing
with a task to its category. Figure 6 shows the distribution
of publications across tasks.

Visual Designs: We distinguish between two types of
visual designs. First, the tree structure can be represented by
node-link diagrams, treemaps, or the like (cf. [24]). Second,
more complex systems integrate additional visual compo-
nents, for example, by encoding class distributions as pipe
diagrams (see Figure 10 below). Some visualizations and
most visual analytics systems combine different designs.

Quality Measures: As a third dimension, we tracked
which numeric measures for the quality of classifiers, such
as Accuracy, Recall/Sensitivity, Gini-index, or Frugality vi-
sualizations depict (cf. [3]). Appendix A briefly introduces
the measures displayed in our sample.

We present the results along the analysis tasks. The
tasks are grouped by the steps in Classifier Development
(Section 4), the tasks in Classifier Utilization (Section 5),
and approaches to the Descriptive Modeling of Classifica-
tion Processes (Section 6). Sub-sections detail on individual
analysis tasks. Before diving into Classifier Development,
we have a look at the visualizations used for introducing
the concept of decision trees in the following Section 3.1.
In Section 7, we present findings across tasks, which are
complemented by a tabular overview in the supplementary
material.

3.1 Concept Introduction

The goal of the Concept Introduction task is to help novices to
understand how decision tree models work in general, not
focused on a particular tree. For instance, a visualization
outlines the hierarchical structure of decision trees, or ex-
plains the sequential application as in Section 2 and Figure 1.

There are mainly two scenarios for using visualization
when introducing the concept of decision trees: On the one
hand, introducing decision trees to people and domains
that have not been using them before [45], [46], [47]. On
the other hand, researchers explain new concepts going
beyond the state-of-the-art [48], [49], [50]. Visualizations
used for Concept Introduction are clean and focus on the
tree structure consisting of decision nodes and leaf nodes.
Predominantly, a small decision tree is visualized as node-
link diagram. No additional information beyond the at-
tributes considered at decision nodes and applied cutoff
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region-centroid-col

Fig. 7. Workflow and visualization of the StarClass/PaintingClass sys-
tem [43], [44]. During model building, analysts use re-projection and
painting of regions at the different levels of the hierarchy to effectively
partition classes in the instance space. Image by Teoh and Ma [43,
Fig. 6]. Copyright ©2003 Society for Industrial and Applied Mathemat-
ics. Reprinted with permission. All rights reserved.

values are presented. Sometimes group sizes are added,
which explicates the spliting into sub-groups. Restricting
visualizations to the bare minimum is in line with the goal of
explaining fundamental mechanisms instead of peculiarities
of a particular example.

4 CLASSIFIER DEVELOPMENT

Classifier Development, in machine learning, is driven by
a machine training a model based on a dataset. While
established algorithms come up with a decision tree au-
tomatically, the whole process is iterative, including the
manual tasks of Evaluation, Diagnosis, and Refinement to
name a few. Thus, practical approaches are often semi-
automatic. Visual analytics can provide powerful interfaces
for interactive machine learning.

4.1 Model Building

Model Building is the process of generating classification
trees, either automatically [51], or interactively by an an-
alyst [52]. The only human inputs required by fully-
automated, algorithmic approaches are a training dataset
and global parameters, such as splitting criteria [53]. Vi-
sualization and visual analytics facilitate interactive Model
Building by providing rich interfaces [7]. In this case,
analysts use the training data and quality measures, but
steer the building process through manual intervention.
This way, the analyst introduces domain knowledge to the
model, which can improve its effectiveness, and can enforce
domain-specific requirements [8], [54].

Prior to Model Building, visualization and visual ana-
lytics can play an important role in data preparation and
exploratory analysis [55]. Here, we assume that the analyst
has already prepared a dataset. There are several approaches
for manual and interactive Model Building. Successful vi-
sualizations enable analysts to keep track of the growing
tree by providing an overview, zooming and highlighting
functions. Liu and Salvendi [24], as well as van den Elzen

saturation-mean

vedge-mean

region-centraid-row

*

Fig. 8. The BaobabView system supports analysts with algorithmic
support for selecting split attributes and presents suggestions visually.
Border color indicates the goodness of the split as measured by the
Gain-ratio. Image by van den Elzen and van Wik [7, Fig. 6].
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and van Wijk [7] present powerful visual analytics systems.
At the same time, the main effort in Model Building is to
choose nodes to expand and to determine appropriate split
attributes and values. Visualizations facilitate the selection
of features by showing the distributions of values and by
displaying effects of potential partitionings [56], [57], [58].

A notable example for an interactive visualization tar-
geted at Model Building is the StarClass/PaintingClass sys-
tem by Teoh and Ma [43], [44]. Analysts draw decision
boundaries in two-dimensional projections of the instance
space to separate classes. An algorithm then builds a de-
cision tree that splits the data according to these decision
boundaries. Figure 7 shows the workflow used to construct
a tree based on continuous attributes.

Van den Elzen and van Wijk [7] present BaobabView,
an extensive visual analytics system offering numerous
integrated views and interaction mechanics. Additionally,
algorithmic support suggests good options, for example, for
split attributes and split values. Figure 8 shows suggested
split attributes including the distributions of values.

4.2 Evaluation

Evaluating the quality of constructed trees is crucial. While
the general predictive qualities of classifiers can be evalu-
ated automatically using quality measures and a separate
test set of previously unseen data (i.e., cross-validation),
more sophisticated Evaluation requires the involvement of
human analysts [3]. The broad Evaluation of decision trees
covers multiple objectives, such as global performance,
performance regarding a class of special interest, tree size
or structure, and application cost. Human analysts aim at
figuring out how well decision trees match these demands.
Based on the Evaluation, they decide on further steps, for
instance, whether or not refinements are necessary.

The confusion matrix is a simple model-agnostic tool for
evaluating the global performance [28], [59]. It can be en-
riched visually, for example, by mapping the number of in-
stances in each cell to colored areas [7]. Another common vi-
sual tool is the ROC plot, which depicts the prediction qual-
ity as measured by Recall/Sensitivity and Specificity [28],
[60]. These model-agnostic techniques are invalueable com-
plements to visualizations particularly designed for decision
trees. Alsallakh et al. [61] present an overview of visual
approaches for the Evaluation of classifiers. Visualizations
targeted at decision trees enable analysts to inspect the tree
structure after (automatic) Model Building [24], [62], [63],
[64]. Interaction capabilities, like pan-and-zoom, are key to
handling large trees. In practice, Evaluation is interwoven
tightly with other tasks. For example, in interactive Model
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Building, the continuous Evaluation of the model is com-
monplace. Although quality measures play an important
role in Evaluation, only a few visualizations present quality
measures. While Accuracy is the most prominent measure,
some visualizations also include some other quality criteria
(e.g., [7], [65], [66]). Noteably, the visualization of Philipps
et al. [28], in Figure 9, presents a multitude of quality
measures, next to a confusion matrix and an ROC plot.

4.3 Understanding

Understanding describes the task of generating an overview
of a decision tree and its underlying data, as well as
browsing its complete structure. This includes the overall
comprehension of the model and its fitness to the clas-
sification task at hand [67]. Generally, Understanding is
tightly interwoven with other stages like Model Building,
Diagnosis, and Refinement. However, in contrast to these
stages, Understanding considers a more abstract level with-
out investigating particular data instances or classes.

When investigating classification processes, getting an
overview of all decision nodes is essential. Node-link dia-
grams are the most commonly used technique for depicting
the tree structure [24], [68], [69]. They enable analysts to
follow the classification process of decision trees [64]. Baoba-
bView [7] also implements another approach by representing
decision nodes as labels in front of class distributions. Links
show the data flowing from parent to child nodes. This
type of visualizations is known as pipe diagram [42]. Pipe
diagrams provide a complete overview of the classification
process, as depicted in Figure 10. Icicle plots [40] are a more
compact option [56].

Understanding is a central step in scientific research.
With the adoption of decision trees for data analysis, more
and more visualizations of decision trees are published.
While the primary visualization task in the publication is
Presentation, readers need to fully understand the decision

NO. XXX, XXX 2020

7
N
eck ='no

n

[

lung
et
breast
P
P4
bone = no

Fig. 10. BaobabView system showing the partitioning of instances.
Correct predictions are visible (A1, A2) and mis-classifications stand out
(B1, B2). Image by van den Elzen and van Wik [7, Fig. 13].

tree in order to comprehend its scientific value. Taking
the constraints of publication media into account, most
visualizations are minimalistic node-link diagrams [70], [71].
Sometimes nodes are augmented with additional visualiza-
tions, such as pie charts or bar charts [72], [73]. In print
media, visualizations with multiple views are rare [74].

While these visualization approaches are intended to
enable the Understanding of the classification process, mul-
tiple or complex decision trees demand more than a sin-
gle visualization technique to highlight all important as-
pects. Commonly, to be more expressive, visual analytics
systems combine different views and link them through
interactions, such as cross-filtering or linking-and-brushing.
RuleMatrix [75] is an example of such a system for visual-
izing classifier rules. More recently, Jia et al. [76] visualize
surrogate decision trees of convolutional neural networks.
Similarly, GBRTVis [77] integrates views for analyzing gra-
dient boosting regression trees.

4.4 Diagnosis

Diagnosis describes the process of unveiling failures of
classifiers and errors in datasets when solving a problem
with a classifier model [78]. Problems in trained models
or the underlying dataset need to be identified. With the
gained knowledge, analysts can correct wrong data labels
and anticipate means to improve model performance [35].
Already in interactive Model Building, it is possible to spot
errors in the dataset by continuously predicting instances
and inspecting mis-classifications [7]. The focus on identi-
fying sources of errors and potential remedies distinguishes
Diagnosis from the more general tasks of Evaluation, and
Understanding.



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, XXX 2020 7

G
Tree Cluster Number of Clusters: 5 @
[ [ [ . ' [ ' ¥
Fo ‘
H—>
Decision Tree
Fas<13.
| —

Fig. 11. The BOOSTVis system enables analysts to inspect boosted
ensembles of decision trees and to diagnose why certain combinations
perform better. Image by Liu et al. [78, Fig. 1].

In many cases, visualizations are employed to diagnose
the decision paths followed to classify instances. Often, an
inspection of an individual path unveils problems of the
training dataset towards the test dataset and vice versa.
Similarly, over-fitting issues can be accounted for by prun-
ing [62]. Mainly, node-link diagrams and pipe diagrams are
used to identify wrong paths and find prune targets [7], [78],
[79]. Interaction helps to investigate splits leading to poor
partitioning [80]. Enhancing these visualizations with data
about the attributes and, for example, their distribution [7],
[81], enables the generalization from particular samples to
the whole dataset. On the level of single splits, diagnosing
errors in attributes is possible [82]. Further, failures in tech-
niques, such as ensemble learning, can be identified [78].

For instance, the BaobabView system [7] features various
interaction techniques and visualizations. The interactions
analysts can perform and the visual mapping to pipe dia-
grams enable a deep-dive into the inner-workings of deci-
sion trees. Further, complementary visualizations (similar
to Figure 8) at the nodes help to learn more about the
distribution of instances throughout the decision tree. The
BOOSTVis system [78], shown in Figure 11, generalizes
this approach to the Diagnosis of boosting tree ensembles
combining several decision trees. It utilizes pipe diagrams
and node-link diagrams to highlight weak decision trees,
and attribute splits. With these visualizations, it is possible
to identify attributes that are more heavily used for a split
after subsampling.

Predicted Class

MMarried W Never married Ml Divorced or Separated Ml Widowed

3549 967 77 38

Accuracy [F1 score]: 0.68 1009 5053 | 684 58
Nr. of Leaves: 6
Nr. of Nodes: 11

Hr. of used Attributes: 2

All Samples

True Class

278 992 1331 123

Depth: 4
Avg. significant digits: 1
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F1 Married: 0.758
F1 Divorced or Separated: 0.465
F1 Widowed: 0.46

10 84 205 m

Accuracy [F1 score] E

Nr. of Nodes =

Fig. 12. TreePOD system: Analysts can compare several candidate
trees in compact pixel-based treemaps, which encode qualitative as-
pects of Pareto optimal trees. Image by Muhlbacher et al. [66, Fig. 1].

4.5 Refinement

As available training data and automatic algorithms (with
all their assumptions) rarely match perfectly, trained models
often need further improvements to solve targeted clas-
sification problems. Such Refinement regularly leads to
optimized and improved models [35]. Most refinements
originate from findings of a previous Diagnosis and tackle
specific problems. For instance, pruning decision trees may
increase generalization [62]. In most cases, Refinement in-
corporates human domain knowledge to automatically built
models post hoc. These refinements steer models in direc-
tions that analysts can relate to their mental models [35].
Interactive pruning is a common capability of visual
analytics systems [7], [62]. With a more in-depth Diagnosis,
it is possible to find intricate problems, such as a leaf node
that should be split, but is not split correctly due to global
parameter settings. In such a case, an analyst is able to
resolve the problem by selecting a split by custom attributes
and split values. Overall, we find few visulizations designed
for Refinement. Most likely, this is the case as Refinement is
especially closely coupled with Diagnosis and the interac-
tion capabilities required for Model Building. Meanwhile,
visual analytics systems excel, as they are build for directly
interacting with data and models. The BaobabView system [7]
mentioned above incorporates such interaction tools. In Fig-
ure 10, highlighted leaf nodes can be pruned as they hardly
separate the instances, but over-fit the training dataset.

4.6 Comparison

Comparison supports model selection for a particular classi-
fication problem at hand. Analysts may compare the overall
performance, or even the performance within subsets of the
data, between two or more models. For example, the ROC
plot at the bottom right of Figure 9 can be utilized to com-
pare different classifiers. The decision trees’ structures can
also be of interest. In this case, the Comparison goes beyond
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Fig. 13. The iForest system represents the decision path flow merged
into a digraph to let analysts understand and compare all decision paths
in random forest models. Image by Zhao et al. [87, Fig. 3].

reporting on quality measures for selecting an appropriate
model. For instance, comparing how meaningful the splits
in one data dimension are enables selecting a model that
segments the data in a way that makes most sense for
domain experts.

Comparing decision trees visually enables domain ex-
perts to manage trade-offs, such as balancing performance
and cost. By putting the human in the loop, domain experts
can perform comparisons along multiple dimensions, which
are hard to automate. With an increasing number of trees
to compare, there remains less space for each individual
tree. As a result, some visualizations build on compact
representations such as treemaps [66] and icicle plots [65].
Comparing trees (and other classifiers) solely based on qual-
ity measures is also common [28], [83], [84]. However, often
the differences between two trees need to be investigated in
detail. Node-link diagrams show the trees’ structures more
explicitly and are common when only two decision trees are
on display [8], [85], [86].

The TreePOD system [66] enables analysts to explore a
broad set of automatically generated candidate trees. Be-
sides the typical node-link diagram to show tree structures,
it offers compact pixel-based treemaps (see Figure 12). Pre-
sented in a small-multiples layout, the treemaps facilitate
the comparison of a variety of trees. They convey quali-
tative aspects of the accuracy (measured by Fl-score) and
complexity (Size) of Pareto optimal trees and thus provide
analysts with the information needed to find a suitable tree
from the generation algorithm’s parameter space.

4.7 Ensemble Building

Combining models in an ensemble often leads to an en-
semble model with strong predictive qualities. In Ensemble
Building, there are several strategies for combining the out-
puts of different classification models, as well as a multitude
of approaches to generate individual models. For instance,
random forests, in their most common form, are ensembles
of decision trees trained using different random subsets
of data features. Model developers build ensembles using
ready-made algorithms or by customizing their outputs. Vi-
sualizations can support the ensemble building by showing
details of the set of models constituting the ensemble.
Visualization and improved interpretation can support
the Diagnosis and Refinement of ensembles [78] (see also
Figure 11). For instance, analysts visualize and compare
feature importance on different trees to help feature engi-
neering [88]. As with the Comparison task, the large number

of trees within the ensemble is challenging. Thus, abstract-
ing from individual trees and focusing on the ensemble’s
prediction can be a reasonable strategy for visualization [89].
The iForest system [87] offers analysts visualizations to un-
derstand and compare decision paths in random forests (see
Figure 13). Analysts use the system to calibrate their trust in
an ensemble’s predictions by inspecting how the ensemble
works, and analyzing training data that is most similar to
new inputs. Solving a problem using similar instances is
known as case-based reasoning [90].

4.8 Provenance and Reporting

Provenance captures the Classifier Development process over
time. Resulting timelines can be especially useful for ana-
lysts to track progress, resume, and return to earlier model
states. However, we find few visualizations of provenance,
except for a table of quality measures tracking recent
changes [91], and some visualizations contrasting train-
ing performance of novel techniques against established
methods [92]. For very large datasets and more complex
ensemble models, supervision of the training process can be
useful, for example, via a line chart showing the classifiers
prediction quality over training time [92, Fig.1]). Looking
beyond decision trees, there are more general approaches
for visualizing changes in hierarchical structures [93]. A
notable feature of decision trees is that the tree itself is a
representation of the training process, as deeper nodes are
expanded later in the building process. Utilizing a hierarchi-
cal visualization like a node-link diagram, therefore, enables
analysts to track the progress of an automated algorithm.

By contrast to Provenance, Reporting generates an aggre-
gated summary of the process up to a specific point in time.
Reports can be used to update managers on recent changes
or to aid developers in resuming. For instance, a report may
include the model structure, performance characteristics,
and a list of important issues that were diagnosed and fixed.

Similar to Provenance, Reporting is not in the focus of
research. In our sample of publications, we could only find
one visualization designed for Reporting on the Classifier
Development process. Figure 9 on page 6 shows the vi-
sualization developed by Phillips et al. [28] for Reporting
on a developed classifier. The visualization combines a
description of the problem at the top, details on the tree
in the center, and quality measures (also in comparison to
alternative classifiers) at the bottom.

5 CLASSIFIER UTILIZATION

Having constructed a classifier, automatically or interac-
tively, there are a number of tasks regarding its utiliza-
tion [7]. By contrast to Classifier Development, now the
decision trees are fixed and ready for application. Adapting
to the target environment and not the training setup is
a particular challenge (see also [3], [94]). Except for the
Presentation of decision trees, this area attracted much less
interest from researchers than Classifier Development in the
past.

5.1 Presentation

Presentation is often stated as one of the main tasks for
visualization [95]. In the case of decision trees, presentation
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Fig. 14. Presentation of a manually created decision tree for discriminat-
ing between facial expressions. Class distributions and decision rules
are displayed in nodes and next to links, respectively. Image by Tam et
al. [99, Fig. 9].

goals range from the description of a tree’s structure [64] via
lessons learned in the construction to presenting potential
improvements of applying a new classifier compared to the
status quo. One particular use case for Presentation is the
visualization of decision trees in scientific publications that
make the classifier explicit for readers [96], [97], [98].

Most of the visualizations for Presentation that we find
target wide audiences. As a result, they apply the node-
link diagrams, which are well known. However, there are
more compact summaries as, for instance, by Kreiser et
al. [100]. They target a small audience and develop a special
encoding for their particular tree. A more typical example
is given by Tam et al. [99], who present the decision tree
they created for distinguishing between facial expressions.
As shown in Figure 14,
they highlight class dis-
tributions at nodes vi-
sually by using color.
Additionally, they ex-
plicate the rather com-

START Triage
Assess, Treat, (use bystanders)
When you have a color
STOP - TAG - MOVE ON

-- Move Walking Wounded

plex rules Of the deCl' -- No RESPIRATIONS after
. head tilt
sion nodes.
-- Breathing but
UNCONSCIOUS

5.2 Application

-- Respirations - over 30

While classifiers are D -- Perfusion Capillary refill >
applied automatically cz)r NO RADIAL PULSE
from a machine Control bleeding

learning  perspective,

. g . -- Mental Status Unable to
there are situations in

follow simple commands

Wthl:l it is beneficial D 5[~ Otherwise
to involve humans
in the Application of L REMEMBER:
a decision tree. The f} Respirations - 30
(manual) Application E Perfusion - 2
p| Mental Status - Can Do
can be relevant when
access to computing
devices cannot be Fig. 15. START triage decision tree [33].

Reproduced from Critical lliness and

guaranteed or available !
Trauma Foundation, Inc. [101].

time is not sufficient to
input measurements,

Gain: blocking packets with Filter1 6334.5 MB (71.1%) / Rule1 alone 6334.5 MB (71.1%)

Bandwidth (MB)

T (gePORT psT PORT P10 SRC P24 SRC PG UNTRY)

(sreCO

Fig. 16. View inspired by parrallel coordinates for monitoring the appli-
cability of filter rules to counter attacks on computer networks. Image by
Aupetit et al. [103, Fig. 5].

for example, in the case of emergencies. But even in case
the execution of the algorithm is performed automatically,
involving humans may be necessary to establish trust
in predictions in general, and to provide a reasoning for
individual predictions. Domain experts often know how
a particular tree takes specific constraints posed by their
tasks and domain into account, and can estimate how well
the training dataset reflects the population in a particular
application.

There are only few visualizations in our sample that are
tailored to Application. One such visualization is shown
in Figure 15. It depicts the decision tree of the START
triage procedure [33] as an indented list. The visualization
is intended to be the size of a credit card and usable in
the field. Starting from the top, emergency responders can
follow the procedure to quickly identify those people who
need immediate treatment.

5.3 Monitoring and Assessment

Checking whether a classifier works in practical application
can be done in two ways, either by the Assessment of
performance up to a specific point in time, or by Monitoring
the classifier continuously. Both tasks aim at rating how well
a classifier extrapolates beyond the training environment
to the real application environment [94]. They consume
the training and application data, next to the classifier as
inputs. Outputs include reports for managers in the case
of Assessment and permanent feedback to operators, which
can be used for spotting problems, in the case of Monitoring.

As with Provenance and Reporting, we rarely find vi-
sualizations for Monitoring and Assessment. The examples
we find are not from productive utilization of deployed
decision trees, but on validation datasets [102]. For example,
a second node-link diagram of the same tree showing class
proportions based on the validation data can be presented
next to the diagram based on the training data [96]. A more
tailored visualization shows class proportions in leaf nodes
in, both, training and validation data [79]. In our sample,
we only find one visual analytics tool for building rules
covering the Monitoring task [103], shown in Figure 16,
despite the fact that dataset shift [104], [105] and other
limitations to generalization demand for the Assessment
and Monitoring of classifier models in practice.
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Fig. 17. A descriptive decision tree modeling the conditions under which
a person is willing to change an opinion when confronted with another.
The decision tree model is presented as a treemap (B) and a node-link
diagram (C). Image by Moussaid et al.- [74, Fig. 3].

6 DESCRIPTIVE MODELING OF CLASSIFICATION
PROCESSES

In contrast to the previous sections, which deal with Classi-
fier Development and Classifier Utilization for prediction,
this section is about investigating classification processes
by means of modeling them as decision trees. In this con-
text, we identify two main tasks. Decision Modeling deals
with gaining insight into postulated or observed decision-
making. By contrast, Model Approximation focuses on ex-
plaining previously constructed opaque classifier models.

6.1 Decision Modeling

Describing observed decision-making processes by decision
trees is the goal of Decision Modeling. It aims at matching
the outcomes of decisions with a suitable decision tree, and
investigating the observed process descriptively as if the
underlying decision process was the execution of a decision
tree. By contrast to prescriptive usages of decision trees,
primarily descriptive decision trees aim to enable insights
and are not intended to be applied.

Examples of descriptive trees explain how British courts
decide whether to make a punitive bail decision [106], and
how people decide whether or not to forgive another person
for an offense committed during social interactions [107].
Visualizations of proposed descriptive trees are typically
simple node-link diagrams that serve to illustrate the steps
required by the decision algorithm and to explicate the
threshold values for selecting branches [106]. In that re-
spect, the presentations do not differ from those designed
for Presentation (discussed in Section 5.1). However, some
visualizations for descriptive modeling compare multiple
tree variants, for example, created by systematically varying
the exit structure at decision nodes [107], [108], [109].

Moussaid et al. [74] employ a more advanced visualiza-
tion that provides two alternative views on their descriptive
model (see Figure 17). They investigate when people are
willing to change their opinion by using a decision tree that
captures two dimensions: i) How different is one’s currently
held opinion from the another? ii) Is the other person more
confident? The relation between the data and the model is
illustrated by a treemap an a node-link diagram.

6.2 Model Approximation

Explaining black-box machine learning models has been
a very prominent task in recent years [67]. Explainable
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Fig. 18. Surrogate approximation of a neural network model using rule-
based explanations in the RuleMatrix system. Rows represent individual
rules and columns depict involved attributes. The pipe diagram on the
left explicates how ordered lists of rules coincide with the branching
structure of decision trees. Image by Ming et al. [75, Fig. 1b].

Artificial Intelligence (XAI) discusses approaches to make
complex and opaque models more interpretable, while in-
teractive machine learning tries to provide solutions for
analysts to apply domain knowledge to models and refine
existing classifiers. Both can be seen as methods to address
the problem of not easily accessible classifiers. One common
method to explain black-box models and to make a complex
model interpretable is Model Approximation by simplifying
their internal processes to surrogate decision trees. These
surrogates are utilized as a proxy for the Understanding,
Diagnosis, Comparison, and Evaluation of opaque models.
In addition, such surrogates can also be used as an interac-
tion interface for the target models, enabling the Refinement
of opaque models through visual analytics.

Surrogate decision tree models are some of the most
prominent approaches for increasing the interpretability of
neural networks [87]. However, finding the appropriate
degree of simplification remains a challenge [117], as the
decision trees should approximate the process and perfor-
mance of the opaque target models, while remaining inter-
pretable. Approaches for visualizing classification processes
in neural networks using surrogate decision trees range
from using hashing neural networks [118], to the analysis of
convolutional neural networks [76], and gradient boosting
regression trees [77].

In contrast to visualizing surrogate models as simplifi-
cations, the RuleMatrix system [75] approximates complex
models (here neural networks) by a list of classification
rules. It enables analysts to interact with the visual inter-
face to explore, as well as refine the opaque target model.
Figure 18 shows the interactive visual interface. In each
row, it displays one classification rule, which is composed
of different attributes, depicted as columns. This interactive
approach is based on user-defined rule filters to adjust the
application of the underlying neural network to boost its
performance. Such interactive feedback is essential to enable
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TABLE 1
Cross-tabulation of tasks and visual designs employed in the 152 surveyed publications. Totals count unique publications in each row/column. The
node-link diagram is the most prominent visual representation of the tree structure across all tasks. Standard visualizations like bar charts, line
charts and scatter plottes are most commonly used to augment the tree structure with additional information.
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TABLE 2
Cross-tabulation of tasks and quality measures displayed in the 152 publications we surveyed. Totals count unique publications in each
row/column. Clearly, Accuracy is the most prominently displayed measure of quality. However, compared to the size of our sample quality
measures are rarely displayed. There is no relationship apparent between tasks and the quality measures displayed. Quality measures are sorted
according to inherent perspectives [3].
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model steering. However, integrating the feedback back
into the opaque model is still an open challenge, and an
opportunity for future research.

7 THE ROLE OF VISUALIZATION AND VISUAL AN-
ALYTICS

Since visualization gained interest in the early 1990s the
number of visualizations of decision trees increased over
time (see also Figure 4 on page 3). Especially in machine
learning, visualizations facilitate tasks such as Model Build-
ing, Evaluation and Comparison. While the introduction
of new techniques (e.g., [41], [114]) spurred novel visual-
izations of decision trees [119], [120], node-link diagrams
remain the most common visual design by far. Only in-
teractive visual analytics systems regularly offer multiple
views on tree structures [65], [66], [79]. Going beyond tree
structures and showing more detailed visualizations as well
is less common than we expected [7], [74], [120].

Interactive visualizations play an increasing role across
many tasks. In Model Building, they support the effective
involvement of domain experts, for instance, by defining
splits [58], [99], [120]. Furthermore, highlighting single de-
cision paths can ease Understanding and Diagnosis [121],
[122]. In Classifier Development, tasks are particularly
closely interlinked. For example, direct interaction with vi-
sual analytics systems can aid in diagnosing a decision tree
and immediately applying a refinement. More generally,
the very nature of machine learning is an iterative process.
Effectively going back and forth between tasks calls for well
integrated visualizations [7], [66].

The visual designs used for the different tasks is depicted
in Table 1. As is also visible from Figure 6 on page 4, some
tasks are more common than others. As noted above, the
node-link diagram is by far the most prominently used
design for representing the structure of the decision tree.
By contrast, we did not observe any visualization that uses
a circle packed layout. While there is a diverse mixture of
designs for further components, the well-known bar charts,
line charts, and scatter plots are commonplace.

To our surprise, there is very little variation in quality
measures displayed with decision trees. Basically, we find a
small number of quality measures quantifying four different
aspects: i) Prediction quality, including Accuracy, AUC, Bal-
anced accuracy, Fl-score, and Lift, ii) Aspects of prediction
quality, like Precision, Recall/Sensitivity, and Specificity,
iif) Group (im)purity, Gini-index and iv) Tree structure,
including Size, and Mean cues used, Frugality. Overall, the
integration of visualizations and numeric quality measures
is limited. Basic Accuracy dominates all other quality mea-
sures, but most visualizations do not show any measures.
Table 2 cross-tabulates tasks and displayed quality mea-
sures, but except for the general lack of displaying quality
measures we do not identify any pattern.

Similarly, rule-based classification is rather a niche topic
in our sample [75], [103], [117], [119], [123]. One possible
explanation for this finding is that, as discussed above,
sets of classification rules can be transformed to decision
trees. Decision trees may provide more structure and thus
be easier to visualize and comprehend in many cases [124],
[125]. In Figure 18, for example, the left-hand side explicitly

Fig. 19. Decision boundaries of ten types of classifiers across
three datasets. The sixth column (center) depicts a decision tree
with typical sharp boundaries in parallel to considered attributes.
Source: https://scikit-learn.org/stable/auto_examples/classification/
plot_classifier_comparison.html (accessed Jan. 2020, cf. [126]).

shows a branching tree structure, despite the fact that the
RuleMatrix system [75] is designed for a list of rules.

In Evaluation, many visual designs are agnostic to the
type of classification model. Employing versatile visualiza-
tions enables comparisons across model types, which are
relevant as the performance of decision trees often needs
to be judged in comparison to other candidate models
such as neural networks. As a result, few visualizations
specialize on the evaluation of decision trees, for example,
by highlighting split values. This observation resonates with
the absence of quality measures in most visualizations.
More examples in the direction of cross-type comparison
come from Concept Introduction, as, for instance, shown
in Figure 19. Such comparisons across model types are not
unique to classification. For instance, Rudin and Carlson [30]
contrast regression trees with other regression techniques.

8 OPEN QUESTIONS AND OPPORTUNITIES

As mentioned in the previous section, we are surprised by
how rarely quality measures are part of visualizations of
decision trees. But even among those visualizations that
show quality measures only a tiny fraction shows multiple
quality measures capturing different aspects of quality [7],
[28], [66]. One exception to this is the ROC plot, which is
a common and model-agnostic visualization showing Re-
call/Sensitivity over Specificity. Still, the question remains,
how can quality measures be integrated in visualizations of
decision trees? Especially for visual analytics and interactive
machine learning, we expect that integrating quality mea-
sures offers analysts additional views on the trees. Just like
linked views advanced data visualization in general, link-
ing quality measures and visualizations more closely will
advance visual analytics systems for interactive machine
learning, and decision trees. They likely also will increase
the acceptance of visual approaches within the machine
learning community.

Likewise, we see a potential for utilizing algorithms
developed in similar domains, for instance, integrating gen-
eral tree comparison algorithms [127], [128] in visualiza-
tions for decision tree comparison. These algorithms work
with hierarchically organized data in general and are likely
to facilitate the comparison between large decision trees
as well. Especially the Comparison of multiple trees and
Ensemble Building are complex and difficult problems for
which no standard visualization techniques have emerged.
More generally, one may ask: How can visualization algorithms
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and visual analytics systems provide better default layouts and
assistance? The tighter integration of mathematical and al-
gorithmic approaches and visualization will not only help
people, who are not visualization experts, to come up with
better visualizations, but also analysts to use visual analytics
systems more efficiently.

These potentials notwithstanding, there are also oppor-
tunities for integrating humans more closely in Classifier
Development. Recent research shows that small decision
trees perform competitively in noisy environments [28], [38],
[39], [50], [108], [129]. Small trees, in particular, constitute a
special opportunity for visualization and visual analytics as
problems with visualizing large trees can be avoided and in-
tegrating analysts” domain knowledge becomes increasingly
important [8]. This raises the question: How can visualiza-
tions and visual analytics systems facilitate the externalization
of domain knowledge? The whole workflow will not only
benefit from the externalization of domain knowledge and
improved communication, but also produce better decision
trees and classifcations in the end. However, to date em-
pirical studies on interactive visual Classifier Development
are rare and usually do not involve domain experts [6], [8],
[54], [56], [130]. Still, interactively constructed decision trees
provide an alternative to deep learning classifiers, especially
in scenarios that demand for the positive properties of
decision trees summarized in Section 2.

Particularly to laypeople, who only get in touch with
decision trees in basic Concept Introduction or by attending
a presentation, the node-link diagram is omnipresent. But
also analysts working with standard software default to
simplistic node-link diagrams that only visualize the tree
structure without additional information, such as distribu-
tions of values or split qualities. How can rich visualizations
and visual analytics systems for dealing with decision trees become
more accessible? Spill-over of design knowledge from the
visualization community will lead to more informative and
aesthetic visualizations. Meanwhile, which visual designs
are most accessible needs to be answered alongside the
technical questions. Although there are some studies com-
paring visualizations of hierarchical data (e.g., [131], [132]),
a number of comparisons between automated algorithms
and interactive systems [6], [8], [43], [44], [52], [54], [56],
[99], [120], [130], [133], [134], [135], [136], [137], as well as
evaluations of individual interactive systems [66], [75], [76],
[77], [87], [117], [123], [138], [139], [140], only few empirical
experiments target alternative visual designs of decision
trees [125], [141] (see also Figure 4 on page 3). Hence there
is an obvious need for comparative evaluations between
different designs. Without such empirical investigations, it
is difficult to formulate and substantiate design guidelines.

In resemblance to the prominence of the node-link di-
agram, we do not find major differences between the vi-
sualizations aimed at different tasks. Clearly, visual analyt-
ics systems covering large parts of the iterative Classifier
Development offer a diverse set of interaction capabilities
and more advanced visual displays [7], [66] than static
visualizations for Presentation. Still, often multiple tasks
are tackled from one general-purpose visualization, not a
number of specialized views. Hence: How can visual analytics
systems integrate visualizations tailored more closely to the steps
in Classifier Development? For example, Evaluation and Diag-

nosis demand for distinct levels of detail, which may be inte-
grated via semantic zooming. Visualizations for Provenance
and Reporting will aid in transitioning between tasks and
facilitate the supervision of Classifier Development efforts.
One particular challenge will be to coordinate the tailored
views in such a way that their potential benefits outweigh
the friction induced by switching between views.

Beyond the Classifier Development workflow, there ap-
pears to be an exceptionally vast and empty space for
creative utilization and future innovation. Both, Classifier
Utilization and Descriptive Modeling of Classification Pro-
cesses, attracted little attention, except for Presentation. It is
much more difficult to deploy and evaluate visualizations
that are aimed at actual utilization in the field. Those
domains that spend the effort to evaluate decision aids
and tools at a relevant scale, like medicine, tend to be
conservative and, understandably, not too open for being a
testbed for late-breaking visual designs and visual analytics
systems. In the area of Descriptive Modeling of Classifi-
cation Processes we can envision that the descriptive use
of Decision Modeling will benefit from visualizations and
visual analytics systems that spill over from Model Approx-
imation, which started to attract researchers only recently
in the domain of Explainable Artificial Intelligence (XAI).
Hence, we ask: How can visualizations and visual analytics
systems for utilization tasks be developed and evaluated? Adopt-
ing visualizations and visual analytics systems in real-world
contexts will be one potential response to societal demands
for an accountable and transparent decision-making when
delegated to (partially) automated classification algorithms.

Taken together, these open questions highlight that even
in a domain that has been researched for decades, there
remain quite fundamental gaps, which align astonishingly
well with more general visualization research. To begin
with, the transparent depiction of diverse quality measures
as well as the provision of good defaults and assistance are
challenging. Our review clearly highlights that there is a
lack of empirical research that prevents the proposition of
substantiated guidelines. At the same time, a study of ob-
servations made by practitioners in their daily work would
complement our work by going beyond our analysis of how
scientists from other domains present their results (see Sec-
tion 5.1). Offering workflows that are accessible to different
stakeholders goes well beyond the development of typical
research prototypes. Despite the prominent discussions on
the task-dependency of visualizations, dedicated tailoring
to task demands is not apparent in our sample. Especially
when it comes to the utilization of classifiers in practice,
there is little research. In consequence, practitioners are left
alone in choosing the right visual tool that supports their
requirements.

An obvious next step is to extend our survey to the
more general field of visualization to support classification
based on machine learning. While visual designs can be
expected to be different, we expect our set of tasks as well
as our focus on performance measures to closely match
the workflows and demands across modeling approaches.
Surveys centered around visualization, like ours, will com-
plement surveys that are structured along high-level tasks
and questions [9], [23], [36]. Regarding potential results, on
the one hand, we would expect to find lacks of comparative
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evaluations of visual designs and visual analytics systems.
On the other hand, more complicated techniques may attract
expert audiences that are capable of working with richer
visualizations, such that basic visualizations comparable to
node-link diagrams are less prominent. Beyond classifica-
tion, for instance, the use of visualization in regression
modeling is an active field of research and a promising
candidate for a similar survey.

9 CONCLUSION

In this survey, we compiled a broad overview on available
visualizations of decision trees and rule-based classifiers
from a by task perspective. The long history of decision trees
and their close relationship to visualization renders them a
perfect class of prediction models for investigating the dif-
ferences between visualizations designed for distinct tasks.
We surveyed eight main sources of publications covering
major visualization venues and extend our sample based
on references, recommendations and additional keyword
searches. In total, our sample consists of 152 publications
dating back to 1986.

To our surprise, visualization designs are rather general
and homogeneous across tasks, instead of being highly spe-
cialized and tailored to particular tasks. By contrast, there is
a big difference between visualizations designed for differ-
ent audiences. In visualizations designed for audiences of
laypeople, the node-link diagram is omnipresent. Machine
learning model developers, on the other hand, often are con-
fronted with a number of complementary designs organized
in linked views. But even in visualizations designed for
model developers, quality measures, except for Accuracy,
are rarely presented in a visual fashion, and alternative
indicators of model quality are mostly lacking.

In consequence, we see substantial opportunities for
integrating visualizations more closely with algorithms and
mathematical measures of model quality. At the same time,
increasing interaction capabilities will lead to an improved
accessibility and the utilization of domain experts” knowl-
edge in model construction. The lack of visualizations for
Classifier Utilization and Decision Modeling uncovers that
there still is a considerable gap between research and practi-
cal application in areas that are more distant to visualization
researchers daily business. Finally, the question remains,
why do alternative (tailored) visual designs not match the
ubiquitous use of node-link diagrams?

APPENDIX A
QUALITY MEASURE GLOSSARY

Accuracy measures the proportion of correctly classified
observations, based on either the training or test data.

AUC is the Area Under Curve of the ROC. As single de-
cision trees provide binary outputs instead of a score,
they appear as points. For classifiers providing a score,
the line emerges from changing the cutoff that dis-
tributes scores to classes.

Balanced accuracy see Weighted accuracy with w = .5.

Fl-score is the harmonic mean of Precision and Re-

TR __ 2-Precision-Recall/Sensitivity
Call/ SeHSItIVIty' F1 " Precision+Recall/Sensitivity

Frugality “quantifies the percentage of information an al-
gorithm ignores when it is implemented on a specific
dataset.” [28, p. 350].

Gain-ratio is the ratio of the Information gain of split A
(IG(A)) and the information content of the split A

(IV(4) = — szf” % + log t;i?) regarding the
binary target variable T: GR(A) = ﬁg%ﬁ; [142].

Gini-index (also Gini coefficient) is used to quantify the
(im)purity of groups [10]. For the binary target variable
T, Gini-index= 1 — P(T)? — P(=T)%.

G-means is defined as the geometric
Recall/Sensitivity ~ and  Specificity:
/Recall/Sensitivity - Specificity. [39].

Information gain is the difference in entropy in the target
variable T before a split and after the split: IG(A) =
H(T)— H(T|A). [142].

Lift measures a classifiers performance by comparing the
proportion of true positives to the expected proportion
if predictions were independent from the true states. In
the binary case this is: Lift= %.

Mean cues used can be used to measure the speed of a
classifier. It is defined as “the average number of cue
values used in making a decision, averaged across all
cases” [28, p. 350].

Precision measures how many examples classified as being
in class A are indeed of class A [27].

Recall/Sensitivity is defined as the probability of detecting
that an observation belongs to class A given that it
actually is of class A.

ROC is the Receiver Operating Characteristic, which tech-
nically is not a quality measure, but a plot for quality as-
sessment that shows Recall/Sensitivity over Specificity.

Size The number of nodes in the tree.

Specificity in binary classification is defined as the prob-
ability of detecting that an observation belongs to the
negative class given that it actually belongs to this class.
Thus, it is the counterpart of Recall/Sensitivity for the
negative class.

Weighted accuracy is defined as w-Recall/Sensitivity + (1 —
w) - Specificity with weight w € [0, 1]. [28, p. 349]

x? measures the goodness of fit of predictions. For details
see Pearson [143].

mean of
G-means=
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Task-based Visual Interactive Modeling:
Decision Trees and Rule-based Classifiers
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1 INTRODUCTION

This supplementary material includes a Primer on De-
cision Trees as discussed in the paper (Section 2), a Brief
History of Decision Trees (Section 3), as well as an overview
on all surveyed papers in Table 1 and related references.

2 PRIMER ON DECISION TREES

Decision trees are a well-established method in machine
learning and especially classification. In the machine learn-
ing domain, decision trees are used as predictive models.
They are trained on a dataset of labeled records to predict
unseen instances. When decision trees are used to classify
instances into a defined set of classes, they are commonly
called classification trees. Conversely, decision trees used for
regression tasks are denoted as regression trees. While both
types share similarities, they differ in use case, algorithmic
implementation, and evaluation measures [1]. For this rea-
son, we focus on classification trees.

The essence of decision trees is the recursive partitioning
of a dataset based on instances’ attribute values [3]. Figure 1
(see also Figure 1 of the paper) displays a small tree from
a risk assessment use case. Patients are classified into one
of two different risk classes: high risk or low risk. At each
inner node of the tree (also called decision node), a splitting
attribute or cue is evaluated. The value of this attribute
determines the path to follow. All paths start at the first
decision node in the tree, which is called root node. In our
example, the root node considers the attribute Minimum
systolic blood pressure. It is shown at the top of Figure 1.
The split value is 91, which creates two disjoint paths. The
paths through the tree represent how the instance space
is subsequently split into sub-spaces according to the test
criteria at the decision nodes. Once reaching a leaf node, as
represented by circles in Figure 1, no further partitioning is
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Minimum systolic
blood pressure
(last 24h)

)

<91 >91

[ Patient’s age }

>62.5 <62.5
Sinus tachycardia
present
Yes No

Fig. 1. Decision tree addressing a risk assessment task in an emergency
room. Based on observed symptoms, patients are classified into a
risk class: high risk or low risk. How a single patient is classified is
transparent as depicted by the blue trace representing one exemplary
patient, who is classified as having a low risk. Data by Breiman et al. [2].

performed. Instead, the label of a leaf node is used to classify
all instances following this path. How the instance space is
split highly depends on the procedure/algorithm used in
constructing the model.

Split values can be defined and computed for both
categorical and numerical data, which is an advantage of
decision trees compared to other types of classifiers, such as
neural networks. For example, the decision tree in Figure 1
exploits categorical (Sinus tachycardia present) and numerical
attributes (Minimum systolic blood pressure). For categorical
attributes, space is partitioned according to specific values.
Sinus tachycardia present is binary, accordingly two paths
belong to the two possible values Yes and No. For numerical
attributes, a range is assigned to each sub-space by pro-
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viding cutoff values (see [3] for details on this aspect). For
example, the cutoff value for Patient’s age is 62.5. Partitioning
is not restricted to binary splits but can include multiple
cutoff values. However, value ranges at numeric decision
nodes have to fulfill the properties of disjointness (mutual
exclusivity) and completeness (covering all possible values).
As a result, each instance is assigned to exactly one path.

Once a decision tree is constructed, new instances can be
classified by following the paths according to the instances’
attribute values. When reaching a leaf node, each instance
is assigned to the class based on the majority of training
instances that ended up in the same leaf nodes. We illustrate
the application of the tree in Figure 1 by assuming a patient
who has a Minimum systolic blood pressure over the last
24 hours of 96. Hence, the patient is assigned to the right
path at the root node split. An age of 67 leads to following
the left path at the Patient’s age node. Finally, the absence of
Sinus tachycardia leads down the right path to a leaf node.
At a leaf node, the patient is classified as a low risk case.

Statistical decision tree learning was established as Au-
tomatic Interaction Detection (AIC) [4] and has gained in-
creased attention since the introduction of CART [2]. Subse-
quently, improved algorithms have been presented, includ-
ing ID3 and C4.5 [1], [5], [6]. While all these algorithms share
the same idea of partitioning the data space recursively,
they introduce various improvements. Directly generating
an optimal classification tree for a given dataset is an NP-
hard problem [7]. Hence, finding a globally optimal tree
is infeasible for typical datasets. In consequence, heuristic,
locally optimal algorithms are used. The most common ap-
proach to construct decision trees from a dataset is Top-Down
Induction. Such algorithms (including the ones mentioned
above) construct a tree by starting at the top (i.e., the root
node), and recursively compute the best partitioning for
each local subset [7].

At each new node, the algorithm searches for the most
effective attributes and cutoff values to perform the split.
Splits are typically univariate based on the values of a single
attribute [7]. Which partitioning is considered best depends
on the choice of splitting criteria. Splitting (and stopping) cri-
teria are one of the main differentiators between algorithms.
However, the large number of measures goes beyond this
brief introduction (cf. [1], [3]). Recursive partitioning contin-
ues until all possible splits fall under some stopping criterion.
A simple stopping criterion is met, if all instances in the local
subset share the same class. Other criteria include reaching a
maximum tree depth, and retaining an insufficient number
of instances in the local subset [7]. In all these cases, the
node is declared a leaf node.

Pruning is the optional step of replacing branches of
a decision tree by leaf nodes or smaller sub-trees. Many
algorithms perform pruning [1], [2], [8], [9]. The goal of
pruning (and early stopping criteria) is to increase the
generalization capabilities of induced decision trees beyond
the training dataset. Without these techniques, decision trees
often grow too large and over-fit training datasets [7]. That
is, the trees capture very specific properties and noise in
the training dataset, which degrades generalization, and the
performance on unseen instances during application.

Apart from improvements to single tree algorithms, en-
semble models that combine multiple decision trees have

been shown to be effective. This includes various techniques
such as weight-based methods, bagging and random forests,
as well as gradient tree boosting [3], [10], [11]. While these
classifiers can achieve strong predictive performance [12],
they lack some of the positive features of single decision
trees, especially in terms of interpretability.

Implementations of classification tree algorithms can be
found in many data analysis software packages. Exemplary
use cases can be found in many disciplines, particularly
in medicine and psychology. The decision tree in Figure 1
is part of a study by Breiman et al. [2], who developed a
decision support system for emergency rooms in the 1980s.
Kononenko [13] surveys many more applications, including
oncology, rheumatology, and cardiology. In economics and
business, a frequently referenced example is credit scoring.
Decision trees are used to predict loan default risk based
on a small set of attributes, such as age and years in current
employment. As they often outperformed human specialists,
while being easy to interpret, American Express used them
in practice [14]. Today, decision trees continue to be used, for
instance, as tools to classify the malignancy of tumors [15].
Similarly, Delen et al. [16] compare different tree algorithms
in the pursuit of predicting a company’s performance based
on a set of financial indicators.

3 BRIEF HISTORY OF DECISION TREES

In a broader sense than surveyed in this paper, decision
trees can be considered to be algorithmic reasoning models
for deriving decisions from a set of conditions. The model
is comprised of a collection of “if-then-else” rules that
are organized into an upside-down tree-like structure, i.e.,
decision nodes. Starting from the inputs to the model (e.g.,
the conditions), the algorithm traverses the tree through a
sequence of “if-then-else” tests and eventually down to a
leaf node. In the case of classification trees, each leaf node
represents an output class. It is common to combine several
consecutive “if-then-else” tests into a “case-enumeration”
test or a composite test.

This tree-based algorithmic model represents a decision
strategy that has been commonplace throughout human
history. Naturally, it is not appropriate to attribute such a
decision strategy to a specific inventor. Nevertheless, there
were important developments, which can be viewed as
major milestones in the advancement of decision tree mod-
els. In this appendix, we provide a rough overview of the
development of human-centric approaches for constructing
decision-tree models. The co-development of these human-
centric approaches affirms the role of visualization and
visual analytics in creating decision tree models.

The introduction of the flow process chart by Gilbreth
and Gilbreth [17] represents a landmark for the formaliza-
tion and application of decision tree models in industrial
contexts. By the early 1930s, flow process charts became part
of industrial engineering education. Almost all flowchart
models are more complex than classification trees since
they allow for feedback loops and other configurations of
digraphs, and contain additional action/operation nodes. Fol-
lowing the same line of thinking, Goldstine and von Neu-
mann introduced the notion of the flow chart for planning
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and outlining computer programs in 1947 [18], when high-
level programming languages were not yet available to
programmers. Similar to flow process charts, flow charts
for programming can describe models that are much more
complex than decision trees.

In parallel, Ramsey first outlined a methodology for
modeling decisions based on probability and utility in
1931 [19]. Von Neumann and Morgenstern formulated a
decision theory [20], in laying down the mathematical
foundation for data-driven construction of decision trees in
business applications. Importantly, these types of decision
trees include chance nodes at which branches are entered
with a predefined probability. It is important to note that
decision nodes have a different meaning as well. While in
the case of classification trees the decision is fixed given
an instance’s values of considered attributes, in the case of
von Neumann-Morgenstern trees a decision-maker is free to
choose any path at each decision node.

These early innovations formed the basis for the emer-
gence of expert systems as a branch of artificial intelli-
gence (Al) in the 1970s and 1980s [21], [22]. Decision trees
and “if-then-else” rules played a central role in the tech-
nology of expert systems. Unlike some Al models, such as
neural networks and decision trees created using machine
learning, expert systems are intended to be software systems
directly-usable by users. By contrast to classification trees
covered in our survey, which are induced from an underly-
ing dataset, expert systems are constructed manually from
existing domain knowledge. In other words, instead of a
tool for bottom-up knowledge discovery, they serve the
purpose of top-down knowledge representation [21], [22].
Each expert system is an Al system designed to function in a
specific domain and perform decision tasks as competently
as a domain expert. It typically consists of the following
system components:

A user interface which allows a user to specify input con-
ditions, receive the conclusion of the system, observe
the system’s reasoning flow, and read about the sys-
tem’s explanation about how a conclusion was reached.

A knowledge base which stores the facts and rules related
to a specific problem domain.

An inference engine which derives intermediate decisions
based on the input conditions and the facts and rules
in the knowledge base and provides a mechanism (e.g.,
a decision tree) for controlling the reasoning flow from
input conditions to intermediate decisions and finally
to an output conclusion.

A working memory which stores the current input condi-
tions, the data associated with the inference flow, and
the history of recent queries and answers.

A knowledge acquisition interface which allows an ex-
pert to enter new knowledge (facts and rules) and
revise the existing knowledge in the system.

Figure 2 shows the FINDOUT mechanism of the well-
known MYCIN expert system [23]. The mechanism links the
user interfaces to the knowledge base. It is not difficult to see
that the mechanism itself is implemented as a decision tree.
In the 1970s and 1980s, it was common to combine the same
or similar subtrees in a large decision tree, resulting in an
acyclic digraph and in some cases a digraph with feedback

IS THE
PARAMETER
A PIECE OF
LABORATORY
DATA?

RETRIEVE Y - LIST OF RULES
WHICH MAY AID IN DEDUCING
THE VALUE OF THE PARAMETER

|

APPLY MONITOR TO
EACH RULE IN THE LIST Y

ASK USER FOR THE VALUE
OF THE PARAMETER

IS VALUE
OF THE
PARAMETER
KNOWN?

IS VALUE
OF THE
PARAMETER
KNOWN?

RETRIEVE Y - LIST OF RULES
WHICH MAY AID IN DEDUCING
THE VALUE OF THE PARAMETER

l

APPLY MONITOR TO
EACH RULE IN THE LIST Y

ASK USER FOR THE VALUE
OF THE PARAMETER

Fig. 2. A MYCIN flowchart describing the Findout strategy for determing
which questions to ask the physician. Decision nodes are represented
as diamonds, action nodes as rectangles. Reproduced from Shortliffe et
al. [23, Fig. 3].

loops. Such simplification helped make a large decision
model easy to visualize while reducing the requirement for
memory space that was costly at that time.

While some well-known Al programming languages,
such as Prolog and LISP, were used to build expert systems,
special-purpose languages and development environments,
such as CLIPS, KAS, KEE, LES, and OPS5, have also been
made available to the developers of expert systems. Readers
who are interested in these languages may consult the book
by Tzafestas [24] and the review by Cong et al. [25]. At
least in the 1970s and 1980s, expert systems were considered
an effective technology for developing practical Al appli-
cations. The technology has been used in many domains
with decision problems for i) configuring a system or a
model from a given set of requirements or components,
ii) diagnosing problems based on given conditions like dis-
ease symptoms, iii) giving instructions in response to why,
how, or what-if questions, iv) interpreting observed data,
v) monitoring systems or operations by comparing observed
data with expected data, vi) predicting the outcomes based
on a given set of conditions, vii) prescribing a solution or
treatment to a problem, and viii) proposing actions for given
conditions and desired outcomes.

A good number of expert systems were built and re-
ceived much attention [24], [26], including: ACE for identi-
fying “trouble spots” within a local telephone network, AL-
ADIN for solving metallurgical problems to enable optimal
alloy design, ASDEP for configuring an electrical auxiliary
system, COMPASS for suggesting maintenance actions for
telephone switching equipment, CRITTER for predicting
the behaviors of a hardware system, and CRYSALIS for
inferring the atomic structure of protein molecules. Many
of these expert systems were deployed in relevant practical
applications. Revisiting these systems some 3040 years
later, we can appreciate the role of human developers in
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creating these deployable systems. In this respect, one can-
not help asking: Can the human-centric approach help when
machine-centric approaches encounter some difficulties?

In parallel to these human-centric decision trees, statisti-
cal decision tree learning emerged [27]. The use of decision
trees in statistics originated in the work of Belson [28], who
first applied recursive partitioning to refine statistical esti-
mates. Based on this work, Sonquist and Morgan employed
decision trees for regression [4]. These early approaches
were met with skepticism and it took some time for the idea
to become accepted. Later, artificial intelligence and ma-
chine learning researchers developed classification and re-
gression trees for knowledge discovery in large datasets [2],
[8]. Simultaneously, rule induction was developed and sub-
sequently improved [27]. These two developments lead to
the notion of decision trees as classification trees, which we
cover in the survey above.

Another strain of decision trees, called diagnostic trees,
is used for evaluating the performance of classifiers. Their
root node divides the sample by the true class value. Nodes
in the second level split instances by the prediction of the
classifier. For example, Gigerenzer and Hoffrage [29, Fig. 2]
present an specially iconic visualization.
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