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Abstract

Explainable AI aims to render model behavior understandable by humans, which can be
seen as an intermediate step in extracting causal relations from correlative patterns. Due
to the high risk of possible fatal decisions in image-based clinical diagnostics, it is nec-
essary to integrate explainable AI into these safety-critical systems. Current explanatory
methods typically assign attribution scores to pixel regions in the input image, indicating
their importance for a model’s decision. However, they fall short when explaining why a
visual feature is used. We propose a framework that utilizes interpretable disentangled
representations for downstream-task prediction. Through visualizing the disentangled rep-
resentations, we enable experts to investigate possible causation effects by leveraging their
domain knowledge. Additionally, we deploy a multi-path attribution mapping for enrich-
ing and validating explanations. We demonstrate the effectiveness of our approach on a
synthetic benchmark suite and two medical datasets. We show that the framework not
only acts as a catalyst for causal relation extraction but also enhances model robustness
by enabling shortcut detection without the need for testing under distribution shifts.
Code available at github.com/IML-DKFZ/m-pax lib.
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1. Introduction

Deep learning achieved tremendous progress, even in complex areas like medicine. However,
current approaches are prone to over-interpreting statistical correlations as causal relations,
which can lead to fatal decision-making (Holzinger and Müller, 2021). A common issue is
the over-reliance on correlations. When a model learns spurious correlation to exploit a
shortcut, it elicits a loss of generalization (Geirhos et al., 2020). This has a negative impact
on the performance under distribution-shifts. Particularly in medical image analysis, it is
essential for models to be robust to changes in acquisition protocol, device, or population
distribution, thus test sets containing distribution-shifts are required to evaluate a model
prior to application. In practice, however, potential distribution shifts are often either
unknown or comprehensive test data is missing.
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Explainable AI (XAI) can enable domain experts to detect and prevent shortcut learning
without the need for additional test data. Specifically, XAI is applied to make predictions
human-understandable, enabling manual extraction of causal relations from correlative pat-
terns (Schölkopf, 2019). Since directly modeling causal relations is still in a preliminary
stage, XAI serves currently as an intermediate step. By applying explanatory methods,
one can qualitatively investigate whether the underlying model relies on medically relevant
features rather than shortcuts, and is therefore capable of generalizing beyond the training
data. To give an example, DeGrave et al. (2021) used explanatory methods to demonstrate
that recent deep learning systems detecting COVID-19 from chest radiographs rely on spu-
rious correlation, rendering a well-performing model in the lab useless for application in the
field. However, current explanatory methods typically provide explanations by means of
visual heatmaps as overlays to the input image but lack the important information of why a
pixel region in the image is used. Causal statements about semantically meaningful features
in the image are hard to discriminate simply in the pixel space, e.g. “color” and “size” of a
red circle, and thus need to be separated to extract the distinctive effects into the prediction.

Our Approach – We propose a framework that improves interpretability through learning
disentangled latent representations (Locatello et al., 2019), capturing semantically mean-
ingful features. We enable the exploratory analysis of the disentangled representations
through visual explanations that can be assessed based on expert domain knowledge. The
captured information is validated and enriched through the application of attribution-based
explanatory methods, not only to the original image but also to the disentangled represen-
tation. This greatly increases model interpretability but also allows for both the detection
of shortcuts that are disentangled in the latent feature space and their use in downstream
task prediction. Based on experiments with synthetic and medical datasets, we demon-
strate that the proposed framework (1) catalyzes more informative causality statements
than classical saliency-maps, (2) facilitates qualitative detection of shortcut learning, and
(3) enables verification of model generalization, all combined and in an interactive setting.

Related Work – In disentangled representation learning in the medical domain, Sarhan
et al. (2019) applied adversarial autoencoders to skin lesion images, successfully capturing
the size, eccentricity, and skin color as latent features. Further, Chartsias et al. (2019)
applied a spatial decomposition network (SDNet), encoding spatial anatomical factors and
non-spatial modality factors in cardiac images successfully and improving downstream task
performance to a level that matches supervised models. Attribution methods have been
used to visually inspect the pixel importance in the inference stage to detect shortcut fea-
tures in medical images (DeGrave et al., 2021), but the use of attribution methods in latent
representations in this setting has not been studied. Recently, Creager et al. (2019) have
proposed that these should be explicitly modeled, but an inherent drawback is it requires
a highly curated dataset that has labels for these biased variables, when these biases may
not even be clear before model deployment.
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Figure 1: Framework map with all three attribution paths. The maximum-a-posteriori
estimate (here µ since all latent distributions are normal) of the latent features is used for
downstream prediction and all attribution computations.

2. Methodology

Our framework is based on an architecture containing an unsupervised trained encoder,
producing disentangled representations, and a multilayer perceptron (MLP) head for su-
pervised downstream task prediction. By visually inspecting samples generated through
traversing the individual dimensions of the latent space and decoding them, we can identify
their captured effect and consistency across the data. The simple, yet effective framework
provides an innovative extension of interpretability of image-based decision-making by com-
bining the following three attribution paths (see Figure 1): (1) The classical attribution of
the original image into the prediction (Image-into-Prediction: AIP ). However, this path
does not always explain why or how a certain feature was used. (2) We aim to reveal
this hidden information through computing the attribution of the latent features into the
prediction (Latent-into-Prediction: ALP ). (3) Finally, by computing the attribution of the
original image into the latent features (Image-into-Latent: AIL), it is possible to verify that
the interpreted captured effect of a latent feature overlaps with its anticipated feature in the
original image. Ultimately, by enabling expert knowledge integration it is possible to make
use of the disentangled structure in the latent representation and the multipath-attribution
mappings, to identify shortcut features.

Disentangled Representation – The encoder of the framework is based on a Varia-
tional Autoencoder (VAE) related method (Kingma and Welling, 2014), which models a set
of latent generative features, z ∈ RM , with the intent of approximating the true data gener-
ating distribution P(·|v) through a modeled distribution parameterized by θ. In particular,
an encoder that achieves a disentangled representation can be defined as one that models
qϕ(z|x), with x ∈ RN as an input image, such that every single latent feature zi is sensitive
to changes from a single generative factor, whilst preserving its invariance to changes in
the other generative factors (Locatello et al., 2019). The ground truth latent factors v are
known only for synthetic datasets, excluding the quantitative assessment of disentanglement
for real-world datasets. To better approximate a disentangled representation, the β-VAE
(Higgins et al., 2017) modifies the original VAE-loss:

L(x, θ, ϕ, β) = Eqϕ(z|x) [log (pθ (x | z))]− βKL(qϕ (z |x) ∥p (z)), (1)
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where the first term corresponds to a “reconstruction loss” and the second term to how well
qϕ(z|x) approximates the prior p(z). Larger values of the hyperparameter β promote better
approximations. In particular, by choosing the prior as an isotropic multimodal Gaussian,
p(z) = N (µ, I), the KL-divergence becomes KL(qϕ (z |x) ∥

∏
i p (zi)) and increasing β en-

courages z ∼ qϕ(z|x) to take the form of disentangled codes (Higgins et al., 2017). Our
methodology for optimizing this loss then follows Chen et al. (2018), which shows that the
KL-term can be decomposed into the index-code mutual information between the original
data and the latent variables under the empirical data distribution qϕ(z, x), the total cor-
relation of z, and the dimension-wise KL-Divergence. They isolated the total correlation
as the source responsible for disentangled representations, without the side effect of greatly
decreasing the reconstruction performance:

Ep(x) [KL(qϕ (z |x) ∥p (z))] =

KL(qϕ (z, x) ∥qϕ (z) p (x)) +KL(qϕ (z) ∥
M∏
i

qϕ (zi)) +
M∑
i

KL(qϕ (zi) ∥p (zi)). (2)

Attribution Methods – Sundararajan et al. (2017) defined attribution methods as
Af (x, x0) = [a1, . . . , aN ]T ∈ RN , with x0 as a baseline value and f : RN 7→ [0, 1] as the
function to be explained, in our case a neural network. For each of the N dimensions, there
is an attribution ai measuring the contribution of xi into the prediction based on f(·). In
particular, we use Shapley value approximating methods and perturbation-based methods,
to compare the explanations and failure modes of the two. Shapley values are based on
cooperative game theory notion, and they fulfill a desirable set of axioms for attribution
methods (Lundberg and Lee, 2017). Perturbation methods perturb the input and measure
its effect on the prediction output. We tested several methods and subsequently settled
on expected gradients (EG) (Erion et al., 2019) and occlusion maps (OM) (Zeiler and Fer-
gus, 2013). While EG approximates Shapley values through pixel-based attribution with
the advantage of not requiring a baseline value, OM uses perturbations and kernel-based
attribution with a dataset-dependent baseline value (see Appendix A for more details).

3. Experiments

In this section, we will qualitatively evaluate the proposed framework on one synthetic
dataset based on MNIST as a proof-of-concept (POC) and two medical imaging datasets.
The synthetic dataset is generated by the diagnostic vision benchmark suite (DiagViB-6)
(Eulig et al., 2021), introducing a shortcut with three different levels of generalization op-
portunities. For the POC, we will first prove on the original MNIST that we can produce
and validate an interpretable latent space. Second, we use the synthetic dataset to show
how the framework utilizes the latent space to reveal model behavior, generalization oppor-
tunities, and learned shortcuts. For every dataset, we compare the classical attribution to
the multipath-attribution-based interpretation. Positive-negative attribution is visualized
in red-blue and absolute in purple. We refer to Appendix A for the detailed configurations
of each experiment.
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Figure 2: Original Image with AIP , disentangled latent features and selected AIL (for all
AIL see Appendix H). For visualization reasons in two cases Integrated Gradient (IG) was
chosen.

Synthetic Benchmark Suite with Handwritten Digits – We use DiagViB-6 to gen-
erate three datasets with 100% correlation between the hue and the three prediction target
numbers. Then we introduce for each dataset a different amount of generalization opportu-
nities containing respectively 0% (ZGO), 5% (FGO 05), and 20% (FGO 20) correlation with
the remaining features, including the other hue levels. The discrete data-generating feature
that controls the position was removed, since it contradicts the continuity assumption of
the latent dimension in β-VAE settings and prevents the disentangling of this feature.

Using MNIST, Figure 2 shows on the left the attribution AIP of the original image
into the predicted output. From the attribution map, we gather that the model not only
captures shape but also uses the space left and right to the center of the number to classify it.
The narrow midsection is almost unique to the “eight” digit and is an informative feature
to distinguish it from similar-looking digits, like “zero” or “nine”. More well-informed
interpretations based on this classical attribution map are limited since it is impossible to
reason why a feature is used, e.g., a line could be used due to its curvature or its thickness.

To make these interpretations we first encode and then sample from the disentangled
latent features (Figure 2, center). This allows to visually identify the independent latent
features, e.g., z2 controlling the thickness, z4 distinguishing between round and line, and z10
changing the tilt from left to right-leaning. The semantic content encoded in these features
is consistent across all images. Features z5 and z6 are collapsed and control nothing. Other
latent features depend on the input image. Then, the semantic content of the independent
features can be validated by using attribution AIL (Figure 2, right). For example, in latent
feature z2, controlling the thickness, the encoder gives positive attribution to all white parts
of the number and negative attribution to empty areas around it. For feature z4, the encoder
gives positive attribution to white pixels laying in the center vertical line and negative to
the surrounding area. And for feature z10, the encoder attributes an “X” shaped mask,
with positive attribution from white pixels laying on the inclining line going from the lower
left to the top right and negative attribution from the other. All these attributions are
consistent with the latent features: larger values in z2 result in increased thickness, in z4 in
a line-like, and in z10 in a right-leaning number.
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We can also gather insights from the disentangled latent space to reveal the presence of
shortcuts and how the model learns to generalize. In Figure 6 (Appendix C) on the left,
we visualize the original image together with the attribution into the prediction AIP . Here
the model detects the digit or hue. Figure 6 on the right shows the encoded latent features
of the original image from the ZGO data. Since no other feature correlates with the digit,
the model disentangled it together with the hue in z7. Only z1 and z2 capture to a small
extent the difference between the digits zero and two. All other dimensions are to a large
extent collapsed.

Figure 6 shows in the center the attribution of the latent features into the predictions
(ALP ). The concept of the plot is explained in Appendix B. Indeed, we observe for ZGO that
the model only uses z7, and to a minimal extent z1 and z2, to make a prediction. Thus, the
model is not capable of generalizing, since it acts fully based on the shortcut. When increas-
ing the amount of generalization opportunities in the data, the encoder captures them in the
latent features and the head is able to use them for prediction. In summary, we showed that
the multi-path attributions first verify the interpretable representations and second utilize
them to reveal that the model not only exclusively relies on the shortcut, but also learns
to generalize when given the opportunities. Quantitative evaluation is given in Appendix G.

OCT Retina Scans – The University of California San Diego (UCSD) OCT retina dataset
by Kermany et al. (2018) contains healthy and ill patients with one of three diseases: DME,
Drusen, or CNV. When observing the vertical cuts of the retina, e.g., in Figure 3, multi-
layered tissues can be identified. At the top are the inner retinal layers, in the middle are
the white outer retinal layers, and blurry at the bottom is the choroid layer.

Figure 3 on the left shows the retina cross-section of a healthy patient. In both attribu-
tion maps below (AIP ), it is noticeable that the model is focusing on the outer retina layer.
But EG also attributes to the top and bottom of the image, indicating that the missing-
ness of a feature at these positions is also important to the model. Many OCT scans have
trimcuts that can be used to identify the patient and act as a shortcut (see Appendix F).
The latent features in the center show that the trimcuts were disentangled in feature z5
(connected to the rotation) and less prominently in z1, which captures many other features
in the image besides the trimcut.

Following the ALP attribution plot at the right of Figure 3, the most important latent
features for the head are z2 and z3. While z2 controls the saturation of the outer retinal
layer, transversing from blurry gray to sharp white, z3 controls the curvature of the retina
transversing from downwards to upwards bend. The outer retinal layer plays an important
role in determining a healthy patient, as already observed in the classical attribution map
AIP , but we can now assume that it is due to its saturation and curvature. Verifying these
interpretations, the OM for AIL in Figure 3 to the right shows that for latent feature z2
the model indeed focuses on the outer retinal layer, allocating positive attribution, and
indicating a saturated outer retinal layer. In the OM for feature z3, the positive attribution
occurs as an upward bend and the negative as a downward bend. Since negative and positive
attribution is present to the same extent, it can be assumed that both cancel out and the
encoder is detecting it is a flat retina. The ALP attribution plot in Figure 3 shows that
the flat retina gives positive attribution to the normal and DME state, distinguishing both
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Figure 3: From left to right: Original image with AIP , latent feature traversals, AIL and
ALP .

from Drusen and CNV. In fact, CNV is mainly characterized by occlusions and Drusen by
small hardenings in the outer retinal layer, both leading to a misshaped retina.

In summary, the framework not only disentangles a possible shortcut and enhances in-
terpretability by explaining why the outer retinal layer is used for prediction. But also
corrects a wrong interpretation based on the classical attribution map, indicating that the
trimcuts are used as shortcuts, although they are not used in downstream task prediction.
Such a misinterpretation could lead to wrong data preprocessing through, e.g., center crop-
ping the images and impacting model performance, possibly resulting in a wrong diagnosis.

Skin Lesion Images – The International Skin Imaging Collaboration (ISIC) 2019 dataset
(Tschandl et al., 2018; Codella et al., 2017; Combalia et al., 2019) contains dermoscopic
images with nine different diagnostic categories. Figure 4 on the left shows a melanocytic
nevus (NV) diagnosed image, commonly known as a mole. When observing both attribu-
tion maps for AIP below, the attribution is almost equally distributed across the image.
Concentrations on exact locations can only be observed weakly. Based on this classical
attribution map, very limited interpretation can be made, as the model focuses on global
information in the image.

When visualizing the latent features, features of the skin lesion such as size (z10) or
color (z7) and skin-related features such as its brightness (z5) are disentangled. The OM
AIL attribution maps for z5 and z10 reveal relatively large areas of negative attribution into
both features, validating that the mole in the image is comparatively large and on light skin.
However, the ALP attribution plot on the right exposes that the model is totally off with
its prediction. Skin brightness and size are the two features misleading the model most,
resulting in a wrong prediction of melanoma (MEL). Both types are closely related since
MEL can grow from an individual NV mole. While NV is a harmless skin lesion, MEL is a
skin cancer and has to be removed. If one of them is a shortcut has to be determined by
an expert. In summary, the framework enables interpretability where classical attribution
maps are uninformative, disentangles possible shortcuts, and explains why a model fails. It
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Figure 4: From left to right: Original image with AIP , latent feature traversals, AIL and
ALP .

follows that the model should in any case be able to distinguish between both outcomes,
and is thus not ready for clinical application. We refer to Appendix E and Appendix I,
for an evaluation of the global attribution and the robustness of the latent features for all
experiments.

4. Discussion and Conclusion

We showcased the potential of combining disentangled latent features and explanatory meth-
ods at different stages of our framework. In addition to the classical attribution path, input
image-prediction, we demonstrate the opportunities of using the attribution path ALP to
interpret the contributions of each latent feature. Furthermore, the use of attribution meth-
ods to uncover shortcuts is a qualitative method and depends on human interpretation.

The loss of feature interpretability due to the decreased reconstruction quality can be
partially mitigated by sidestepping the decoding path and instead resorting to the attribu-
tion path AIL. Due to the projection of the original image into a low-dimensional space,
the information bottleneck influences the in-distribution test performance. If one is not
interested in interpretability but in downstream performance, other more accurate methods
exist, e.g., based on contrastive loss functions (Chen et al., 2020), at the cost of loss of inter-
pretability. Further limitations induced by disentanglement are discussed in Appendix D.

In conclusion, we proposed a framework to enhance interpretability and generalization
by combining disentangled representation learning and a novel implementation of multipath-
attribution mappings. Beyond artificial settings, our method has proved itself on medical
datasets. Explainable AI in an interactive setting (Spinner et al., 2020) is especially valuable
for the medical community since it not only makes decisions comprehensible in high-risk
settings but also enables the physician to actively engage with it. Furthermore, by introduc-
ing a combination of the two areas in XAI, interpretable models, and explanatory methods,
we bring the field one step closer to making alleged black-box models transparent.
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Appendix A. Experiment Setups

Dataset
DiagViB-6 OCT Retina Scans Skin Lesions (ISIC)

Encoder CNN ResNet50 ResNet50
Number of layers 5 Conv2d / 1 FC 16 (ResNet Bottleneck) / 2 FC 16 ResNet Bottleneck / 2 FC
Activation function ReLU ReLU ReLU
Batch normalization No Yes Yes
Gradient clipping No 0.5 (Value) 0.5 (Value)
Residual connections No Yes Yes
FC layer dimensions 256 (1000, 256) (1000, 256)
Latent dimension 10 10 10
Decoder CNN CNN CNN
Number of blocks 2 FC / 5 ConvTransp2d 1 FC / 6 ConvTransp2d 1 FC / 6 ConvTransp2d
FC layer dimensions (256, 1024) 512 512
Channels (64, 64, 32, 32, 32) (32, 512, 256, 128, 64, 32) (32, 512, 256, 128, 64, 32)
Activation function ReLU / Sigmoid (output) Leaky ReLU / Sigmoid (output) Leaky ReLU / Sigmoid (output)
Batch normalization No Yes Yes
Gradient clipping No 0.5 (Value) 0.5 (Value)
Residual connections No No No
Loss β-TCVAE β-TCVAE β-TCVAE
Alpha (α) 1 1 1
Beta (β) 10 10 10
Gamma (γ) 1 1 1
Gamma anneal steps 200 200 200
Head MLP MLP MLP
Number of hidden layers 2 2 2
Layer dimensions (512, 512) (512, 512) (512, 512)
Activation function ReLU / Softmax (output) ReLU / Softmax (output) ReLU / Softmax (output)
Optimizer Adam Adam Adam
Learning rate 1e-4 1e-4 1e-4
Weight decay 1e-4 1e-4 1e-4
Scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Other
Input image dimension 128 x 128 x 3 256 x 256 x 1 256 x 256 x 3
Batch size 64 (VAE) / 16 (Head) 128 / 32 64 / 32
GPUs RTX 3090ti A100 A100
Number of GPUs 1 3 3
VRAM in total 24 GB 120 GB 120 GB
Explanatory Methods EG / IG / OM EG / OM EG / OM
EG sample size 250 200 200
OM baseline value 0.5 0 0.5
OM kernel size 20 x 20 15 x 15 15 x 15
RAM in total 64 GB 168 GB 168 GB

Table 1: All hyperparameters for the three experiments.

Over the course of our experiments we use different architectures and hyperparameters. All
encoder-decoder architectures are trained with the β-TCVAE loss. We weight every term in
the KL-Divergence respectively with α, β, and γ, as in Chen et al. (2018). To optimize the
weights, we use Adam with cosine annealing on the learning rate. We introduced stratified
balanced sampling, gradient clipping, and a warm-up parameter on the KL-divergence term
to stabilize the loss function. To visualize the latent features with the decoder, we sam-
ple from each conditional latent distribution symmetrically around the mean by a distance
weighted with the variance of zi|x. All hyperparameters are listed in Table 1.

Attribution Methods – In case of an existing, trained black-box model, a new surrogate
model or method has to be constructed to post hoc contribute an explanation (Rudin, 2019).
Depending on the input data (Marcinkevics and Vogt, 2020), these explanations take various
forms such as metric-related, visual or symbolic explanations. Nevertheless, all methods
can be characterized and grouped based on two criteria. The first criterion distinguishes
whether a method outputs global or local explanations. Global explanations characterize
the whole dataset, e.g. variable importance in tree base models, whereas local explanations
characterize only a single observation. The second criterion distinguishes whether a method
is model-specific or model-agnostic. Model-specific methods can only explain a particular
class of models or require access to a model, e.g. to use its gradients. Model-agnostic
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methods can be applied to any arbitrary model by accessing merely the model’s input, and
output data (Marcinkevics and Vogt, 2020).

In this work, we settled for one model agnostic method, OM, and two model-specific
methods, IG and EG. All methods are attribution-based methods, measuring the attribu-
tion of input features into the prediction. Other explanatory methods contain e.g. symbolic
meta-models (Alaa and van der Schaar, 2019) or counterfactual explanations (Carvalho
et al., 2019). Compared to IG and depending on the baseline value of IG, EG also at-
tributes to the missingness of features, i.e. when the model detects that a feature is not
in the image (e.g. in Figure 9 versus Figure 10). Negative attribution indicates features
having a negative impact on the predicted output class and is visualized in blue (attribution
is measured separately for each output class). Positive attribution is visualized in red, re-
spectively. Absolute attribution indicates the general importance of features, but does not
provide information on whether features contribute positively or negatively into a certain
output class prediction (visualized in purple). For EG, we visualize the absolute attribu-
tion on the medical datasets since the negative-positive attribution occurs to be randomly
distributed over the attribution values, a behavior also observed in DeGrave et al. (2021).
In the case of AIP , the attribution into the ground truth label is shown.

Integrated Gradients (IG) – Sundararajan et al. (2017) circled out two axioms fun-
damental to attribution methods, in their opinion, which were not satisfied by existing
methods: sensitivity and implementation invariance. Sensitivity specifies that when an in-
put differs from a baseline in one feature and prediction outcome, it should have positive
attribution. Further, if the model output is constant when changing a feature, this fea-
ture should have zero attribution. Implementation invariance states that for two equivalent
models also the attribution should be equivalent (Sundararajan et al., 2017; Marcinkevics
and Vogt, 2020). However, IG is not model-agnostic (Marcinkevics and Vogt, 2020). For
the input feature xj and its baseline value x0j , the IG based attribution is defined as:

IGf
j (x) = (xj − x0j)

∫ 1

α=0

∂f(x0 + α(x− x0))

∂xj
dα (3)

The attribution is a path-integral of the gradients w.r.t. the j-th feature along a straight
line between the observation and the baseline value. This can be generalized to non-straight
paths to only integrate inside a defined region. Besides the two axioms noted, IG satisfies
the axioms of linearity (in its original form), completeness, and symmetry-preserving. Com-

pleteness can be proven by
∑p

j=1 IG
f
j (x) = f(x)−f(x0) (Sundararajan et al., 2017). Based

on these axioms, IG is producing unique attributions, which are a generalization of Shapley
values from cooperative game theory if a game is infinite (Aumann and Shapley, 1974).

Expected Gradients (EG) – IG uses a baseline value for each observation which has to
be chosen prior and is not always clear. When there is no clear baseline, multiple baseline
values can be chosen. However, this requires multiple integrals, which is not very efficient.
Erion et al. (2019) proposed to avoid choosing a specific baseline by setting a probabilistic
baseline and integrating over it:
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EGj(x) =

∫
x0

IGj(x, x0) pD(x0) dx0 (4)

=

∫
x0

(
(xj − x0j)

∫ 1

α=0

∂f(x0 + α(x− x0))

∂xj
dα

)
pD(x0) dx0 (5)

= E
x0∼D, α∼U(0,1)

[
∂f(x0 + α(x− x0))

∂xj
dα)

]
(6)

With D as the underlying data distribution. Since the integration over D is intractable,
the equation is reformulated to an expectation computed through sampling. A mini-batch
training procedure for EG looks as follows: First, draw samples of x0 and α, second compute
the values inside the expectation, and at last average over the samples. Compared to IG,
EG values also approximate Shapley Additive Explanations (SHAP) values (Erion et al.,
2019; Lundberg and Lee, 2017).

Occlusion Maps (OM) – Zeiler and Fergus (2013) introduced OM, which is also called
grey-box or sliding window method, as a perturbation based approach. By replacing (oc-
cluding) rectangular regions in the image with a given baseline and computing the difference
in output compared to the original image, the method verifies if the model truly identifies
the location of an object, or if it’s using other features in the image for prediction. By
sliding this kernel through the image and repeating these steps, important regions in the
image can be revealed.

Appendix B. Multioutput-Decision-Plot
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Figure 5: Overview of the multioutput-decision-plot.

Decision plots visualize how a complex model arrives at its prediction. The multioutput-
decision-plot visualizes local attribution in a multiclass-classification setting if the respective
attribution method approximates SHAP values (Lundberg and Lee, 2017), which is the case
for EG. SHAP values answer the question ”How does a prediction change when a feature is
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added to the model?”. They approximate each output class prediction as a linear equation
of the input feature’s attributions. Thus, we can visualize the EG-based attribution as a
line, where each step in the line is the added attribution from the incrementally added input
feature (see Figure 5). It shows the iterative process of how each feature contributes to the
overall prediction, when adding each feature one by one, from bottom to top.

At the top, the line strikes the x-axis at the predicted logit output of the model, with
the color of the line indicating the respective value. Each line indicates another output
class, with the dotted line showing the ground-truth label belonging to the input feature.
The final prediction of the model is the label with the line ending up most right at the top,
i.e. having the highest logit output value. Thus, if the dotted line ends up most right, the
model predicted the true outcome. Our input features are always the ten latent features
(zi), ordered by descending importance at the y-axis. Importance is determined by the sum
of the absolute attribution over all classes for each latent feature and can be different for
each latent feature observation. If a latent feature attributes negatively into the respective
output class, the line of the class moves to the left side and the other way around if it has
positive attribution. The legend in the bottom right corner shows the labels of all output
classes.

Appendix C. Shortcut and Generalization on DiagViB-6 Benchmark
Dataset
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Figure 6: (Left) EG-based attribution AIP and ALP for all three levels of generalization
opportunities. ALP as a multioutput-decision-plot (Lundberg and Lee, 2017), which is
explained in Appendix B. (Right) Latent features of ZGO. z7 captures the shortcut.

Appendix D. Limitations of Disentangled Representations

Disentangled representations are one of the key elements in our framework. Unfortunately,
there is no guarantee for meaningful disentanglement when applied to real-world data.
There is no proof without inductive bias that they indeed disentangle the underlying inde-
pendent ground truth features (Locatello et al., 2019). Then again, the question arises if
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representations are required to encode the real ground truth features entirely, or whether
the disentangling of some features in the input image which remain constant over different
images suffices for a given task? In our work, we showed that we indeed can disentangle
semantic features from a real-world image dataset and that associated representations are
to a large extent stable across different input images (see Appendix I). Nevertheless, we are
aware of the risk disentangled methods imply, thus we will list four of them and explain
how the framework manages them.

Interpretability of Disentangled Representations – Since we are not limited to artifi-
cial datasets but also handle much more complex real-world data, interpretability is limited
to qualitative assessments via visualization and experiments. Further, no disentangling ar-
chitecture guarantees that it indeed finds the ground truth features, be they independent
or dependent, they just penalize or discriminate certain entities which are attributed to
disentanglement (Locatello et al., 2019). Thus the risk exists, that the latent features do
not capture any consistent features from the input image at all. And even if they capture
them, they have to be correctly interpreted by the analyzing human. Worse, the human
could do a wrong interpretation.

In our framework, we propose a solution that aims towards preventing wrong interpre-
tations by the AIL map, where the human can cross-validate their interpretation with the
attributed features from the original image into the respective latent feature. Of cause, this
process provides no definite security, but enables an interactive setting where human and
machine interpretation can be combined, and lets users progress with more caution in the
case of contradicting interpretations. Further, the added benefit of AIL is perpendicular to
classical interpretation methods, meaning that even if the latent features do not capture
any features from the original image they can simply be ignored, and interpretability falls
back to the classical attribution map AIP .

Local Information and Image Size – VAE based methods can be relatively unstable
in reconstruction regarding high resolution images (Vahdat and Kautz, 2020) and hyperpa-
rameter selection (Rybkin et al., 2021). If the image is too large it is hard for the β-TCVAE
to capture disentangled features in a relatively small latent space and simultaneously re-
construct the image. On the other side, if the image is resized too small local features in
the image can get lost. These local features are further often not captured by the latent
features, or if they are, not visible in the reconstructions due to poor decoder performance.

We experimented with the Covid-19 dataset also used by DeGrave et al. (2021), but the
tokens in the images which are one of the shortcuts used by the models were too small and
not captured by the latent features. For all other datasets presented in this paper, this was
not the case. We resized the medical images to a dimension of 256 x 256(x 3), which is
quite large for real-world images to reconstruct by a VAE (Vahdat and Kautz, 2020), but
it is acceptable in our case if the reconstructions are a little bit blurry. This image size
preserves local features in the images while simultaneously balancing out reconstruction
and disentanglement quality.

Decoder Quality – Typically in disentanglement research, the decoder quality is neglected
because the applied artificial datasets are simple to reconstruct (Higgins et al., 2017). This
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is not the case for complex real-world images, with the additional obstacle that decoding
of the latent features is one of the only ways to evaluate them. As mentioned before, this
is especially true if the features of interest are local and small. The chosen β-TCVAE
loss has an advantage here against the classical β-VAE since it is not penalizing the whole
KL-Divergence, but only the TC part of it, isolating the source of disentanglement and
mitigating the trade-off between reconstruction quality and disentanglement strength.

Indeed we observed almost no difference in reconstruction quality for different values of
β, except for the DiagViB-6 dataset where information is so global that even for blurred im-
ages number and hue can be identified without any problems. We did observe reconstruction
quality differences in the case of both medical datasets for different latent dimension sizes.
But with larger latent dimensions the latent space becomes too cluttered and not useable
in an interactive setting. However, in terms of interpretability, the idea of the framework is
that the latent features capture more general or global features of an image, which are then
again easier to reconstruct. This of cause can contradict the goal of shortcut detection.
Further research could look into the combination of disentangling methods with bottleneck
methods achieving high reconstruction performance such as the Vector Quantised - Varia-
tional Autoencoder (VQ-VAE) by van den Oord et al. (2017).

Trade-off between Downstream Task Performance and Interpretability – Since
interpretable models introduce various constraints on their architectures to be human-
understandable, they are not optimized to achieve high accuracies (Marcinkevics and Vogt,
2020; Bengio et al., 2013). As for bottleneck-based interpretable models such as the β-
TCVAE, they impose an information bottleneck (Tishby et al., 2000) through first project-
ing into a very low dimensional latent space, and second constraining the latent features
to be disentangled. Thus, higher values of β, implying stronger disentanglement, are often
associated with worse inlier test performance on downstream tasks (Locatello et al., 2019).
This is not the case when one of the disentangled features is identical to the target of the
downstream task (Higgins et al., 2017).

In our experiments, we observed a negative correlation between downstream task inlier
test performance and β for all datasets, except DiagViB-6. In detail, we observed a mean
accuracy of 94.82% (n = 5, σ = 0.4%) for β = 1 and 93.33% (n = 5, σ = 0.57%) for
β = 4, showing the negative correlation between accuracy and β. On the OCT dataset we
observed a mean balanced accuracy of 59.72% (n = 5, σ = 3.12%) for β = 1 and 54.80%
(n = 5, σ = 4.62%) for β = 4.

Further, one could argue that the pretrained encoder could still improve performance
in a semi-supervised setting, where a large majority of the dataset is unlabeled and only a
small fraction of the data is labelled.

We tested this claim by pretraining the encoder on ∼ 98% of the dataset and fine-
tuning the MLP head on the other ∼ 2% labeled data. Since the accuracy values from
the β correlation experiment were also obtained on this dataset split, they can be used
as comparative values. We observe that even in this setting other approaches such as
pretraining without fixing the model weights or transfer-learning perform significantly better
with the same architecture. This is mainly due to the fact that the weights of the encoder in
our setting are fixed to enforce disentangled representations, whereas in other settings the
whole encoder can be fine-tuned to the downstream task. For example, when pretraining
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the same encoder but not fixing the weights for downstream task prediction, we achieve
96.12% (n = 5, σ = 0.23%) accuracy on MNIST and 82.84% (n = 5, σ = 3.05%) balanced
accuracy on OCT. These examples highlight the fact that the performance-interpretability
trade-off can be quite substantial on more complex data sets even in a setting favorable
to interpretable models that allow for exploiting unlabelled data. Further, we observed
performance gains when increasing the latent dimension of the β-TCVAE, which at the
same time results in a cluttered latent space encoding thereby reducing interpretability.

Since the focus of the presented work is on catalyzing innovative approaches to inter-
pretability, we leave the optimization of the trade-off with downstream task performance to
future research.

Appendix E. Global Attribution
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Figure 7: Global attribution computed based on 200 balanced samples.

When visualizing attribution directly as a heatmap upon an image, it is reasonable to
only show the local attribution based on the underlying image. Interpretability through
global attribution, i.e. the attribution averaged over several images, is only of limited use
since the position of local features varies between images. But due to the disentangled latent
features and their invariance to change between images, if they are indeed independent, we
can compute their global attribution into the prediction target. We implement this through
a balanced sampling of the attribution maps from 200 images, approximating the global
attribution over the whole dataset, and taking the mean over the absolute value for each
latent feature. This allows for statements about the general importance of a latent feature
in downstream task prediction.

In Figure 7 on the left, we can observe for the ZGO dataset, z7 is the only important
one for prediction, becoming a shortcut feature. Not only for local images as observed
before but also over the whole dataset. The other two datasets show a steady decrease
in importance over the ordered latent features, with the importance of each latent feature
differing per outcome class. For example, the most important OCT feature, z9, is mainly
important in classifying DME and Normal outcome images, and z3, controlling the tilt of
the retina, for classifying DME and Drusen. It has to be analyzed by local attribution
with positive-negative attribution maps if these latent features are used by the model to
distinguish between both outcomes, or between the two highly and two weakly attributed
outcomes. When turning to the ISIC skin lesion data, the latent feature z10 stands out. It
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captures the size of the lesion, which is a reasonable general feature applicable for almost all
outcome classes. Nevertheless, compared to the relative importance of the outcome classes
in other latent features, z10 seems to be especially important in classifying actinic keratosis
(AK), melanocytic nevus (NV), and basal cell carcinoma (BCC).

Appendix F. Trimcuts as a Shortcut

Figure 8 shows the OCT scans belonging to the same patient. All images have almost the
same trimcut at the top, revealing it as a shortcut for the model, to learn to distinguish
between patients and thus between illnesses.

Figure 8: The OCT scans for the same patient show the similar large trimcut at the top.

Appendix G. DiagViB-6 Test Performance under Distribution-Shift

Summary

Gen. Level n Mean Std Min Max

ZGO 5 0.421 0.001 0.420 0.422
FGO 05 5 0.424 0.001 0.423 0.425
FGO 20 5 0.440 0.004 0.435 0.446

ANOVA

Sum Sq Df F value Pr(>F)

Gen. Level 0.00106 2 88.52 6.54e-08
Residuals 0.00007 12

Table 2: DiagViB-6 test accuracy for each generalization level (n = 5 per level). Significant
difference between at least one of the levels with a p-value of 6.54e−08 ≈ 0.

To evaluate our findings also quantitatively, the DiagViB-6 benchmark suite also gen-
erates a test set. The test set consists of covariate-shift and new-class-shift data. We train
each head fives times on different seeds for each generalization level dataset while still eval-
uating on the same test set. The fixed encoder is unique to each generalization level. The
accuracy of the inlier validation data is 100% for all models. The boxplot and summary
table in Table 2 both show an increase in mean accuracy on the test set when increasing
the generalization opportunities. The standard deviation is low for all three generalization
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levels. The significant F-Test in the ANOVA table proves that there is a difference be-
tween at least two generalization levels. This quantitatively supports the findings from the
qualitative analysis by the framework that the model indeed learns to generalize.

Appendix H. MNIST AIL Attribution

For the sake of completeness we added the AIL attribution maps for all examples and latent
features from Figure 2, based on EG and IG.
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Figure 9: EG-based AIL for five example images.
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Figure 10: IG-based AIL for five example images.
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Appendix I. Independence of Latent Space Features

To show that independent features in the latent space indeed are consistent between different
images we visualize the latent space of three images belonging to three different classes. The
encoder and the sampling distance is the same for all three classes.

𝜇 𝜇 𝜇

Class: 0 52

Figure 11: Latent features for all three classes. The same shortcut is always present in latent
feature seven. Feature one and two show class-dependend differences. All other dimensions
are mainly collapsed.

𝜇 𝜇 𝜇

Class: CNV DMENormal

Figure 12: Latent features for images of the classes Normal, CNV and DME. While the
latent features of Normal and CNV mainly overlap, the large trimcut in the DME image
effects the latent features. While most latent features still capture the expected behavior,
trimcut related behavior is no longer so easy to recognize.
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𝜇 𝜇 𝜇

Class: BKL VASCNV

Figure 13: Latent features for images of the classes NV, BKL and VASC. All three latent
spaces show consistent features, even for different sized lesions and darker skin color.
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