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Abstract

ExpLIMEable is a tool to enhance the comprehension of Local Interpretable
Model-Agnostic Explanations (LIME), particularly within the realm of medical
image analysis. LIME explanations often lack robustness due to variances
in perturbation techniques and interpretable function choices. Powered by a
convolutional neural network for brain MRI tumor classification, ExpLIMEable
seeks to mitigate these issues. This explainability tool allows users to tailor and
explore the explanation space generated post hoc by different LIME parameters to
gain deeper insights into the model’s decision-making process, its sensitivity, and
limitations. We introduce a novel dimension reduction step on the perturbations
seeking to find more informative neighborhood spaces and extensive provenance
tracking to support the user. This contribution ultimately aims to enhance the
robustness of explanations, key in high-risk domains like healthcare.

1 Introduction

The increasing use of machine learning necessitates explainable artificial intelligence (XAI)
techniques to bridge the gap between the complexity of algorithms and the need for human
comprehensibility, especially in high-stakes applications like healthcare Gunning et al. (2019).

a) b)

c) d)

Figure 1: LIME overview:
a) original image; b) seg-
mented image; c) per-
turbed image; d) final ex-
planation (green: adds to
classification, red: sup-
ports other prediction).

Local Interpretable Model-Agnostic Explanations (LIME) Ribeiro et al.
(2016) is a post hoc local perturbation-based XAI technique that
generates explanations based on the following steps: Identifying
interpretable features, i.e., superpixels in the image domain; sampling
the neighborhood of the input data by generating perturbations; fitting
an interpretable model, to the predictions in the sampled neighborhood
and estimating the importance of each feature from the predicted
coefficients. Figure 1 shows an example of the described process in
brain MRI images, the focus of this work. LIME is widely adopted
for explaining complex models, especially in the image and medical
domains Garreau & Mardaoui (2021); Ahsan et al. (2021). Yet, its
explanations vary with factors like perturbation techniques, leading
to research on its stability Visani et al. (2022); Slack et al. (2020).
To enhance LIME’s understanding, we developed ExpLIMEable, an
interactive dashboard built around the steps in Figure 1. It aids ma-
chine learning developers in assessing LIME’s limitations, examining its
sensitivity to different parameters, and streamlining prediction expla-
nations in tumor classification. We analyze segmentation approaches
and introduce a novel perturbation dimension reduction step to study LIME’s robustness.
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2 Related work
Stability of LIME Research has intensified to assess the robustness of XAI techniques and
works have highlighted LIME’s challenges, such as sensitivity to input variations and hyper-
parameters Alvarez-Melis & Jaakkola (2018); Bansal et al. (2020). Recent extensions aim to
address these issues, including S-LIME Zhou et al. (2021), which determines the number of local
perturbations required to guarantee stability, and B-LIME Abdullah et al. (2023) that incorporates
bootstrap sampling to improve stability and local fidelity, but no definitive solution exists.

Visual diagnostics tools for LIME Given these challenges, works have focused on using visual
diagnostics to assess explanations. For instance, Goode & Hofmann (2021) uses feature heatmaps
and explanation scatter plots to analyze consistency and fidelity. Moreover, interactivity has been
investigated with ExplainExplore Collaris & van Wijk (2020) providing interactive explanations,
and other efforts adapt to specific subgroups Wang et al. (2019); Chan et al. (2020). Our
work concentrates on the parameters and user interaction, introducing a novel sampling strategy.
Unlike similar efforts Saito et al. (2020); Visani et al. (2020), we stay faithful to LIME’s original
implementation and focus on its inherent steps studying segmentation and dimension reduction.
Inspired by the explAIner framework Spinner et al. (2020), we emphasize provenance tracking.

3 Implementation: LIME and tumor classification

Users This application is catered to machine learning experts with a basic understanding of
explainability and LIME, specifically, who are interested in investigating its robustness with respect
to changing modeling assumptions. With a user-in-the-loop approach, the dashboard allows for
exploration, customization, and provenance tracking.

LIME implementation refinements This tool helps explore various configurations of the
LIME algorithm interacting with the steps described in section 1. Firstly, the segmentation of
the images that generate the superpixels is investigated with algorithms that include Felzen-
szwalb Felzenszwalb & Huttenlocher (2004), Slic Achanta et al. (2012), Quickshift Vedaldi &
Soatto (2008) and Watershed Neubert & Protzel (2014). Secondly, we sample the perturbations
by introducing a dimension reduction step that projects the perturbed images and clusters them.
We explore three well-known dimensionality reduction techniques: UMAP McInnes et al. (2018),
t-SNE Van der Maaten & Hinton (2008), and PCA Ringnér (2008). This way, we aim to select
the most informative local perturbations, i.e., those within the cluster of the image under study.

Dataset and classification model We used a Brain Tumor MRI Dataset from Kaggle MRI of
3285 samples with four classes: three types of tumors and healthy brains. Five samples per class
were kept as a test set and an 80%-20% train-validation split was used. The model architecture
was EfficientNet-B1 Tan & Le (2019) pretrained on ImageNet Russakovsky et al. (2015). Further
details of the dataset, pre-processing, and predictive model are provided in Appendix A.

4 ExpLIMEable: Visual analysis workspace

The interactive dashboard consists of two distinct and separate pipelines, "Preselected image"
and "External upload", where users progress through steps using a top stepper and can move
forward or backward. All throughout, onboarding explanations and ? buttons clarify steps
and algorithms and the left panel displays pipeline history. The dashboard uses calming blue
tones and optimized colors for accessibility Wong (2011). The developed platform is available at
http://b1-dimensionality-reduction-for-lime.course-xai-iml23.isginf.ch/.

Pipeline 1: Preselected images The main pipeline, as laid out in Figure 2, comprises four
steps: Image Selection, Explanation, Segmentation, and Reduction, with a loop from Reduction
to Explanation, initiated by the user. Further and detailed visualizations of the interface described
in this section can be found in Appendix C. In the first Image Selection step, a machine learning
expert chooses one of a set of suggested images and selects "next" in the navigation. Secondly,
on the Explanation page, the user is invited to a tour of different LIME explanations for MRI
classification, which were precomputed for the set of suggested images. Each explanation is
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Figure 2: ExpLIMEable workflow, detailed in section 4. Depiction of the four steps in purple: 1.
Image Selection, 2. Explanation, 3. Segmentation, 4. Reduction, and a, potentially endless, loop
back to step 2. The algorithms used and methodology are highlighted in red, the user input in
green, and the pipeline outputs in yellow. The ML expert is portrayed as the user of this pipeline
and visual examples of the interface at the different steps are included for reference, with further
detailed visualizations in Appendix C.

based on different segmentation and dimension reduction methods with adjustable parameters,
mentioned in section 3. Explanations are presented in a grid of rows, each allowing one parameter
variation, to depict its influence. In the same page, a total of 500 explanations, including
those displayed in the interface, are projected with UMAP onto a 2D scatter-plot for enhanced
comparison, as seen in Step 2 in Figure 2. Explanations can be selected by the user from the
external image grid and a trajectory is generated within this embedding indicating the point from
the latest selection. This provenance tracking allows monitoring and navigating the remaining,
unexplored explanation space and facilitates an understanding of the explanation’s sensitivity
toward the parameters, each labeled with a specific color. To prevent overplotting, the trajectory
map can be discarded. Users can customize the interface layout with a movable grid, and
investigate parameters, while selecting a reference configuration to generate new explanations.
In the next Segmentation step, the user chooses a segmentation algorithm, adjusts parameters
using sliders, and iterates until they achieve the desired result. Step 3 in Figure 2 shows an
example of a segmented MRI with the selection of the segmentation method and parameters.
The final step is an optional dimension Reduction, our novel methodological contribution. After
segmentation, perturbed images are projected with a dimension reduction method chosen by the
user, and a scatter plot (Step 4 in Figure 2) visually indicates the embedding space and which
perturbation cluster will be used in the subsequent explanation. After dimension reduction, the
user loops back to the Explanation step with the new computed explanation projected to the
scatter plot with the pre-computed examples for comparison. All newly computed explanations
are cataloged in a dedicated panel (See Step 2 in Figure 2) for better provenance tracking
and guidance. The user can engage in a continuous loop of Explanation, Segmentation, and
Reduction to thoroughly explore all possible explanations in the scatter plot space, eventually
finding a satisfactory configuration. Overall, the integration of provenance tracking enhances
the narrative by preserving a record of past explorations. Users also have the option to redo or
change the image returning to image selection or switch to Pipeline 2, the "user upload" branch.

Pipeline 2: External upload The "External upload" branch, an alternative to Pipeline 1, starts
with a user image upload. Hereafter, it does not include an exploratory explanation map as
pre-computations are not possible. This branch involves Image Upload Selection, Segmentation,
dimension Reduction, and a final Explanation page. This pipeline can be used by previous
users of Pipeline 1 to try tailored parameter configurations on their own data samples and by a
second user group, application domain experts, corresponding to clinicians in this medical data
scenario, to obtain individual explanations. The latter group uses the default setting to obtain the
explanations for simplicity. Further details of this secondary pipeline can be found in Appendix B,
visualized in Figure 3. In using this tool, there exists the potential for testing samples that fall
outside the distribution of data used for training. It is important for the user to exercise caution
and remain aware of this possibility. Note that the current deployed version using the provided
link is a preliminary prototype and only Pipeline 1 works reliably.
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5 Discussion and conclusion

In this study, we introduce a tool to enhance LIME’s understanding, despite its inherent complexity.
Our efforts have been directed toward enhancing user experience, with improvements in visual
aesthetics, the incorporation of distinctive color schemes, and the integration of features such
as multiple provenance tracking paths and onboarding guides. We argue that incorporating a
potentially endless loop within the interface yields substantial advantages, enabling users to
navigate the system more effectively to understand the explanation space. The introduction of
dimension reduction of the perturbations represents a novel contribution for controlled sampling.
This platform holds promise for machine learning experts to enhance their understanding of
explainability methods. Given the fast-paced deployment of models in everyday tasks and the
growing regulatory requirements, we regard our platform as a valuable asset. Particularly, this
tool tackles a medical imaging problem, a high-risk domain where explainability is key. Overall,
we believe that the platform will provide clearer results when explaining robust models, as they
have been shown to highlight discriminate features better Shah et al. (2021).

Limitations The main pipeline of this tool, while promising for clinical decision support,
necessitates prior machine learning expertise to fully harness its potential, and therefore only
machine learning experts are intended to use it. This limitation is surpassed by Pipeline 2,
where a user can directly generate an explanation. Hereafter, this extends the potential users
to clinicians but a simplification of the platform would be required to make it fully translatable
to the clinics. Currently, quantitatively evaluating XAI methods remains challenging due to
a lack of consensus and standardized metrics. Presently, we do not provide a quantitative
metric for explanation comparisons, which is desired to assess the robustness and the efficacy of
dimensionality reduction. In addressing these challenges, existing frameworks for classification
evaluation can serve as foundational building blocks. For instance, comparing predictions after
removing the most influential features based on different XAI methods Hooker et al. (2019);
Rong et al. (2022) provides a viable approach and our next efforts will tackle this problem.

Future work As for future work, our aspirations encompass expanding the interactivity during
the dimension reduction phase and conducting comprehensive user studies with questionnaires
and surveys to gain valuable insights into user interactions with explanations and the use of the
tool. Moreover, extending the pre-computed dataset will facilitate generalization of Pipeline 1.
Additionally, implementing parameter exploration for Pipeline 2 is a next step, offering users
full autonomy in their exploratory endeavors. However, this is accompanied by the challenge of
addressing out-of-domain scenarios, which may need retraining the model with the appropriate
distribution. While the current dashboard predominantly focuses on image data, it can be
adapted to other data types, such as tabular data or signals. The segmentation step would be
substituted with alternative perturbation methods, such as introducing random noise or removing
data points, while the dimension reduction step would remain unchanged. Visualizations for
other data types would be replaced with tables or plots. Lastly, our focus has been on LIME
as one of the most prevalent XAI methods. However, we posit that a similar platform could
be extended to other methods, such as SHAP Lundberg & Lee (2017), which considers all
possible feature combinations for attribution. We could accommodate its most used variation,
KernelSHAP Lundberg & Lee (2017), equivalent to weighted linear regression in LIME with
a specific kernel. This extension would enable the investigation of perturbation effects and
dimension reduction within our framework, with the optimization tailored to kernel-weighted
linear regression. Moreover, using this framework with GradCAM Selvaraju et al. (2017) or
other gradient based approaches widely used for imaging data is also possible to study their
variability. However, we focused on LIME as the control of its intermediate steps is a more
relevant contribution to understanding XAI, as gradient based approaches lack these steps.

Conclusion In summary, the growing reliance on machine learning in decision-making, par-
ticularly in critical domains like healthcare, necessitates the development of XAI. One widely
discussed explainable technique is LIME, which is model-agnostic and provides locally interpretable
explanations. However, LIME is not robust and its explanations depend on various parameters
and perturbation methods. To tackle this challenge, we propose a tool designed to enhance
comprehension of LIME and allow users to explore diverse explanations to understand which
parameters the method is most sensitive or robust to. Our focus lies in the specific context of
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brain MRI tumor classification, providing a structured workflow for machine learning developers to
gain insights into model behavior. We introduce a novel approach to sampling in the perturbation
space. Applying dimensionality reduction to such perturbations, we aim to select more reliable
instances for a more robust explanation. In essence, ExpLIMEable facilitates the exploration of
explanations generated by different LIME instances, providing a practical solution to shed light on
system limitations, sensitivity, and robustness with a coherent narrative with provenance tracking.
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Appendix

A Implementation details

Dataset and pre-processing The dataset consists of 2D MRI frames for three types of tumors:
glioma, meningioma, and pituitary, as well as MRIs of healthy brains, with 931, 942, 906, and
506 images respectively. During the pre-processing of 2D frames of brains, we have filtered
duplicate images and detected the outline of the skull with the Python library OpenCV. The
images have been cropped based on this contour and then resized to 240x240 pixels. We used
80% of the images for training the ML model and the other 20% for validation. Finally, the test
set comprises five images per class. The example image in Figure 1 is part of the test set.

Classification model The predictive model we use in the backend is based on the EfficientNet-
B1 architecture Tan & Le (2019). The model was pre-trained on ImageNet Russakovsky et al.
(2015) and later fine-tuned for 30 epochs on our dataset using TensorFlow. The final model
achieves a balanced accuracy of 97.9% on the validation dataset and all test images are classified
correctly. In order to ensure meaningful interactions with the visual interface, the predictive
model has to be reasonably accurate to yield sound explanations in combination with LIME.

B Pipeline 2: External Upload

Pipeline 2
Results:

----------------------
Classification

Ground
Truth

Dimensionality
Reduction

Method
Image

Segmentation
Method & 

Parameters
Explanation
Visualisation

Input Interaction Methodology Output

External Uploaded 
Image 2. Segmentation 3. Reduction 4. Explanation

Dimensionality 
Reduction

Image 
Segmentation

1. Image Selection

Results

ML expert Clinicians

Image Classification: CNN based Classification EfficientNetB1
Image Segmentation: felzenszwalb; slic; quickshift; watershed                                Dimensionality Reduction: PCA; t-SNE; UMAP

Figure 3: ExpLIMEable workflow, detailed in Section 4. Visualization of the four steps of the
interactive workflow in purple: 1. Image Upload Selection, 2. Segmentation, 3. Reduction, and
4. Explanation. The methodology used is highlighted in red, user input in green, and outputs
in yellow. The machine learning expert and the clinicians as application domain experts are
portrayed as the users of this pipeline.
This secondary pipeline is envisioned as a tool for a user to directly generate an explanation of
an uploaded image using either default or customized settings. The "External upload" branch
starts with the user uploading their own image. This branch is an extension to the main Pipeline
1 (See Section 4) and does not include the exploratory map. The workflow in this branch
consists of Image Selection, Segmentation, dimension Reduction, and Explanation, as depicted
in Figure 3). In this branch there are no pre-computed explanations as user-uploaded data
cannot be anticipated in advance, hence there is no comparative map among different parameters.
Hereafter, a clinician can make use of this simplified Pipeline 2 in the default setting to acquire
an explanation for a prediction made by a machine learning model. Moreover, focusing on the
main user group, machine learning experts, we enable users to compute new explanations using
the different segmentation techniques and dimension reduction approaches proposed in section 3,
granting them the freedom to explore. For now, we do not perform any sanity checks concerning
the validity of the uploaded data and consider it the user’s responsibility to upload sensible data
close to the model’s original training data. The user can walk through and explore the steps
of segmentation and dimension reduction and investigate the respective influence by reviewing
their final explanations, displayed as in Figure 8 in Appendix C. The user can upload new images
to continue to explore. This allows the user to verify, on their own data, findings, and results
from interacting with the main branch on pre-computed samples. In future versions, we plan to
compute an explanation overview in the same manner as the current main branch. This could
be done by simply informing the user about the long waiting time, and allowing them to switch
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tasks or work in parallel sessions until the computation is complete. Once finalized, this branch
would be able to guide the user through the same exploration as the main branch. Note that the
current deployed version using the provided link is a preliminary prototype and only Pipeline 1
works reliably.

C ExpLIMEable Interface

In this chapter, we include a detailed overview of the visual interface of ExpLIMEable, to clarify the
described steps in Section 4 and the inclusion of provenance discussed throughout the manuscript.
Firstly, Figure 4 shows the first step of both pipelines, Image Selection and the components
within this page, such as the stepper bar, that is present throughout the workflow. From here,
the user can upload an image to proceed to Pipeline 2 or select an image out of a suggested set
to get started with Pipeline 1. Secondly, Figure 5 shows the Segmentation step and the range of
parameters and algorithms that can be studied. On the left, a panel with the selected explanation
to be used as a reference in Pipeline 1 is displayed for user guidance. Subsequently, Figure 6
visualizes the dimension Reduction step, the possible configurations that can be studied, and
the resulting embedding space. Recall that each point corresponds to a perturbation and those
belonging to the cluster of the original image are the ones used in the subsequent explanation. As
a final step, Figure 7 shows how the Explanation page looks like in Pipeline 1. The components
for provenance tracking are highlighted and the scatter-plot with the embedding space of the
explanation is displayed with a sample trajectory that results from exploring multiple explanations.
Finally, an example of the grid of pre-computed explanations is displayed together with the newly
generated explanation. Note that the disposition of this page includes a movable grid that the
user can rearrange at any point in time to aid their mental model. Finally, Figure 8 displays the
Explanation step in Pipeline 2 where the newly generated explanation is shown along with the
final prediction and parameter configuration. Recall that this second pipeline does not include an
explanation exploration because new user uploaded data is used at all times.

1

Stepper Bar

Image Upload

Image Select

Figure 4: Overview of the interactive components (section 4): 1 Image Selection: Including the
stepper to guide through the pipeline and entrance point to both pipelines.
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2

Segmentation Method

Tooltip

Parameter Slider Bar

Figure 5: Overview of the interactive components (section 4): 2 Segmentation: Method
selection and resulting segmentation that will generate the perturbations.

3

Dimensionality 
Reduction Method

Dimension Reduction Result

Figure 6: Overview of the interactive components (section 4): 3 Reduction: Method selection
and clustered embeddings of the local perturbations.
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Provenance Tracking 

4

Parameters Configurations 

Lime Explanation
Agree with Prediction

Disagree with Prediction

Figure 7: Overview of the interactive components (section 4): 4 Explanation page of Pipeline
1: Model prediction, pre-computed explanations to explore parameters, the 2D embedding of the
explanations with user trajectory for provenance tracking and user-added explanation.

5

Figure 8: Overview of the interactive components (section 4): 5 Explanation page of Pipeline 2.
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