
Eurographics Conference on Visualization (EuroVis) 2023
D. Archambault, R. Bujack, and T. Schreck
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 3

VISITOR: Visual Interactive State Sequence Exploration
for Reinforcement Learning

Yannick Metz1 , Eugene Bykovets2, Lucas Joos1 , Daniel Keim1 , Mennatallah El-Assady2

1University of Konstanz 2ETH Zürich

Figure 1: Visualizing state-action sequences in VISITOR: Overlaying a projection with custom visual encoding to explore different aspects:
(a) State space embeddings with semantic zoom and state aggregation, (b) bundling of state-action sequences with highlighted decision points
that emphasize the divergence of episodes, (c) visual mapping of states and network activations, (d) embedding of state-to-state transitions.

Abstract
Understanding the behavior of deep reinforcement learning agents is a crucial requirement throughout their development.
Existing work has addressed the identification of observable behavioral patterns in state sequences or analysis of isolated
internal representations; however, the overall decision-making of deep-learning RL agents remains opaque. To tackle this, we
present VISITOR, a visual analytics system enabling the analysis of entire state sequences, the diagnosis of singular predictions,
and the comparison between agents. A sequence embedding view enables the multiscale analysis of state sequences, utilizing
custom embedding techniques for a stable spatialization of the observations and internal states. We provide multiple layers: (1) a
state space embedding, highlighting different groups of states inside the state-action sequences, (2) a trajectory view, emphasizing
decision points, (3) a network activation mapping, visualizing the relationship between observations and network activations, (4)
a transition embedding, enabling the analysis of state-to-state transitions. The embedding view is accompanied by an interactive
reward view that captures the temporal development of metrics, which can be linked directly to states in the embedding. Lastly,
a model list allows for the quick comparison of models across multiple metrics. Annotations can be exported to communicate
results to different audiences. Our two-stage evaluation with eight experts confirms the effectiveness in identifying states of
interest, comparing the quality of policies, and reasoning about the internal decision-making processes.

CCS Concepts
• Human-centered computing → Visual analytics; • Computing methodologies → Reinforcement learning;

1. Introduction

Deep reinforcement learning (RL) is widely recognized as
an instrumental and promising approach to enable sequential
decision-making applications [ADBB17, MBP∗23], e.g., in game-
play [MKS∗13, SHS∗17] or robotics [SMG22]. However, the adop-
tion to real-world applications is challenging due to the difficulty of
training [Irp18, DLM∗20, HIB∗], as well as the inherent opaqueness
and unpredictability of agents.

The complex training and evaluation process of Deep RL agents
can benefit from interactive visual workflows [MSS∗], e.g., by sup-
porting the analysis of agent behavior and increasing interpretabil-

ity [WGSY19, HLB∗20, MSHB22, EHA∗22]. Many problems, in
particular when considering the deployment of trained agents, are
connected to the black-box nature of deep learning models; not
only is the decision-making opaque but also the behavior of agents
trained via RL is oftentimes unpredictable. To address this lack of
transparency in understanding the behavior and decision-making of
AI models, the area of explainable AI has recently experienced a
surge in research [AB18]. However, compared to tasks like image
classification, sequential decision-making places an additional bur-
den on XAI techniques. Due to the correlation between subsequent
steps, it is not sufficient to explain single decisions in isolation, for
example, with single input attributions [SVZ13]. Instead, explana-

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Associa-
tion for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

DOI: 10.1111/cgf.14839

https://orcid.org/0000-0001-5955-4487
https://orcid.org/0000-0001-7049-5203
https://orcid.org/0000-0001-7966-9740
https://orcid.org/0000-0001-8526-2613
https://doi.org/10.1111/cgf.14839
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcgf.14839&domain=pdf&date_stamp=2023-06-27


Metz et al. / Visual Interactive State Sequence Exploration for RL

Scenario
& Goal

T1 Analyze Behavior

T2 Compare Agents

T3 Understand 
Decision Making

Tasks

T4 Generate 
Actionable Insights

Model Summary 
List

2D Embedding 
View

Temporal 
Reward View

Joint Workspace

VISITOR

Episode 
Selection

Diagnosis & 
Annotation

Comparison

User 
Interactions

Exploration

Export Annotations

T
R
A
I
N
I
N
G

Sampled
Episodes
Across

Models & 
Check-
points

Global 
Embeddings 

& Metrics

Iterate over Environment/Agent/Training Specifications

Figure 2: The workflow of VISITOR: The scenario sets the general framing, shaping design decisions and expectations about training outcomes.
To allow for analysis at scale, we compute global metrics and embeddings based on all available data and then visualize a sampled subset of
episodes for the analyst. These episodes are visualized in a joint workspace, consisting of a 2D state sequence embedding view, a reward, and
an environment action probability view. These views facilitate a process of iterative exploration, annotation, comparison, and decision-making.

tions must always be contextualized in the sequential process. A sec-
ond factor complicating the generation of meaningful explanations
is the uncertainty about the distribution of states that are available
for analysis and generation of explanations. In non-sequential tasks,
a fixed test set is generally available. During the evaluation of RL
algorithms, the user has no control over the states for which expla-
nations can be generated.

In related work, interpretable and explainable deep reinforcement
learning is mainly covered by visual analytics systems, visualizing
state-action sequence and behavior [WGSY19, HLB∗20, MSHB22],
as well as input attribution methods [GKDF18, NIAN]. Sequence-
focused approaches help to better understand the progression of
states and, therefore, the distribution of samples available for expla-
nations. However, they often cannot provide contextualized explana-
tions for decisions. Conversely, input attributions, particularly when
only applied to single states, cannot communicate actual behavior
and the resulting sequence of observations to the user.

In this paper, we present VISITOR, a visual analytics approach for
interactively exploring the state sequence space of RL agents. In Fig-
ure 2, we summarize the entire workflow, from the design phase and
data collection to analysis. A potentially large set of episodes across
checkpoints and models is collected during training or evaluation. A
human expert can select and explore relevant episodes. In Section 3,
we define four user tasks that VISITOR is designed for. The system,
including the workflow and elements, are presented in Section 4.
Our approach builds on existing work in interactive sequence data
visualization [WGSY19, WZY∗21, HSH∗21] and state embedding
visualizations (e.g., utilizing t-SNE) [ZZM16, MKS∗13]. However,
existing work is not targeted at the analysis and comparison of mul-
tiple policies. By enriching these embeddings with automated anno-
tations, filtering, and highlighting, as well as dynamic multi-scale in-
teractions, we achieve a compact and highly flexible exploration tool
for sequential decision-making with deep reinforcement learning.

Beyond increasing the users’ trust in the system, analyzing the
behavior of trained agents is crucial during the validation and opti-
mization of the RL environment and training settings. Understand-
ing how agents either fail or succeed can inform design choices and
even drive future algorithm developments. Therefore, in this paper,
we present an approach that enables the comparison of different
agents and allows analyzing an agent’s behavior during training.

In addition, since the reward function is the core optimization

objective in RL, it should play a central role in the analysis of an
agent’s behavior. Hence, this paper also describes the coupling of
state sequence embeddings with an interactive reward view.

Overall, this paper contributes: (1) a general approach to jointly
analyze behavior and internal representations of Deep RL agents,
with a particular focus on the comparison of agents at different lev-
els of detail, (2) a implementation of multiple linked views, includ-
ing a novel RL state sequence embedding with multiple layers, (3)
an expert study evaluation with eight RL experts confirms our ap-
proach’s utility for analyzing the behavior of several RL agents in
three different environments. Our technique and visual elements
showcase possible solutions to deal with large, unlabeled state and
state-action spaces beyond the domain of reinforcement learning.

2. Background and Related Work

In the following, we give an overview of the key concepts of (deep)
reinforcement learning before reviewing related literature work. As
our framework is generalizable to any RL algorithm, we keep the
discussion of prerequisites on a general level.

2.1. Prerequisites for Deep Reinforcement Learning

In reinforcement learning, an agent perceives and acts autonomously
in an environment while pursuing a specified goal. The agent acts in
an environment that has a state st ∈ S at time step t, where S is the
set of all possible states. The framing is formalized in the Markov
Decision Process (MDP) framework [SB18]. Note that in most
scenarios, especially in the real world, the state of the environment is
not fully observable. Reasons for this could be occlusions, missing
sensor capabilities, and others. We refer to the part of the state that
is accessible to an agent at time step t as an observation Ot ∈ O.
The agent can perform an action at ∈ A in the environment and
observe the effect of the action in the next step. The agent has access
to a scalar reward signal rt at each step, which encodes the agents’
performance in achieving the desired goal. The reward signal can
be delayed, which means it does not have to be informative at each
step [SB18]. Instead, a high reward value may only be a sparse
signal, e.g., when reaching a goal. An RL agent learns to maximize
the accumulated reward in a trial-and-error process, i.e., trying out
actions and observing the resulting reward. The goal of RL is to
learn a policy π : O→A that controls the behavior of the agent. The
future expected reward for a given policy, called the value v(s) of a
state, plays an essential role in many RL algorithms, as it denotes

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

398

 14678659, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14839 by U

niversitaet K
onstanz K

om
m

unikations-, Inform
ations-, W

iley O
nline L

ibrary on [19/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Metz et al. / Visual Interactive State Sequence Exploration for RL

the predicted worth of a particular state for a trained agent.

Deep RL combines traditional RL algorithms with deep neural
networks, facilitating their application to unstructured, potentially
high-dimensional observations, e.g., image sequences. Because of
this, Deep RL is affected by many of the issues of deep learning as
a whole, particularly the black-box nature of models.

2.2. Visual Analytics for Explainable Deep RL

Architectures for Interpretable RL [HCDR21] often rely on human-
readable rules or are based on deep learning architectures that in-
corporate information structures to learn human-interpretable rep-
resentations [MMSV20, LSSP21, AS19, HAB∗20, PCC∗, NIAN,
SHSW21]. In this work, we provide tools to explain the decisions
and investigate internal representations of arbitrary policies in RL.

Explainable AI for RL – Apart from visual analytics-based so-
lutions, there have been additional efforts to increase the explain-
ability of reinforcement learning agents. This included fixed pro-
jections of the state space [ZZM16], utilization of input attribu-
tions [GKDF18, SHS∗22], and sample-based explanations [SG20].
We take inspiration from this work but combine it with methods
from visual analytics to enable the analysis of highly complex state
sequences and a larger set of user tasks. We provide a more detailed
discussion of related work in the supplementary material.

Visualizing State Space With Projections – Using 2D pro-
jections to visualize sequences of arbitrary states is an estab-
lished approach [BSH∗15]. Recently, both projection path ex-
plorer [HSH∗21] and projection space explorer [EHA∗22] have
presented visualizations of decision-making processes via two-
dimensional projections, using tools like clustering of states, or
glyph markers to highlight structures in the data. While we share
the basic tool of projection-based state sequence visualizations, we
embed this visualization in a system targeted at RL debugging, ad-
dressing specific challenges via different layers, annotation tools,
and components facilitating a workflow targeted at RL.

Agent Movement Patterns – DQNViz [WGSY19] is a visual ana-
lytics application to analyze the behavior of agents in Atari environ-
ments (see Arcade Learning Environment [BNVB13]). Its trajectory
view shows movement patterns of the pad in breakout controlled
by an agent during training. However, the presented approach has a
challenge in generalizing to environments beyond the targeted ones.
It only supports one-dimensional movement patterns and discrete ac-
tion spaces. In contrast, our approach is suitable for arbitrary types
of behavioral patterns and enables comparison between models.

Analysis for Recurrent Architectures – DRLViz [JVW20] is an ap-
proach to interpret the internal (latent) memory of an agent as found
in LSTMs [HS15, HS97] or other recurrent neural networks. The
main view is a memory timeline, which visualizes how the values
of the hidden state vector change. The tool shows how certain val-
ues in the hidden state can be linked to objectives like collecting
an item at a game level. DRLIVE [WZY∗21] analyzes RNN-based
deep RL agents. The work shares our ambition to enable the analy-
sis of longer episodes. The work also utilizes reward line charts and
embeddings of different features, such as the pixel values of a game
screen or the hidden state of a cell in an RNN. Both approaches

rely on a memory-based architecture (RNNs) with a relatively low-
dimensional hidden state vector and make multiple assumptions to
enable their visual design. In contrast, our method is agnostic to the
type of environment and architecture and does not rely on a sequen-
tial structure of recurrent activations to represent state sequences.

Domain-Specific Analysis – DynamicsExplorer [HLB∗20] di-
agnoses a trained policy for a robot control task. A robot arm has
to move a small ball in a maze by tilting a platform. The tool incor-
porates some views to track the trajectories of the ball in the maze
during episodes. Similar to DLRViz, there is a condensed temporal
visualization of the hidden state of a recurrent neural network. The
tool enables the inspection of real-world conditions over test runs
and tries to explain the relation between simulation parameters and
internal model parameters. It clusters similar trajectories to identify
commonalities between runs. Again, the authors note the difficult
generalization of the approach to other use cases.

High-Level Aggregation of Agents – Saldanha et al. [SPBA19]
showcase a tool that helps data scientists during experimentation.
The tool provides insight into hyperparameter settings, supports
identifying which behaviors lead to higher or lower rewards, and
how the behavior of agents evolves during training. It includes a
view aggregated the trajectories of an agent over an episode. Fur-
thermore, a thumbnail is computed to represent an agent’s trajectory
performance in 2D space.

In summary, most of the existing work either targets or requires
a custom architecture [JVW20, AS19, VMS∗18, WZY∗21] or is
currently only applicable to a very specific use case or environ-
ment [WGSY19, JVW20, HLB∗20]. In contrast, we present a gen-
eral approach specifically tailored to reinforcement learning and
supporting arbitrary RL environments and algorithms.

3. System Requirements and Tasks

Based on interviews with RL experts, we present two particular RL
explainability challenges, followed by the derived requirements and
user tasks to address these challenges.

Exploring the emerging state space – In RL, we face a special
situation compared to supervised/unsupervised learning. When ana-
lyzing a standard ML model, e.g., for image classification, we have
full control over the samples included in an evaluation set Seval . For
sequential decision-making tasks, we only have full control over the
start states, while the subsequent states depend on the learned policy
and are, therefore, not controllable. This means that the state space
we can analyze an agent over is emergent and depends on the policy
π, start state s0, and environment’s transition probabilities P . In su-
pervised learning, we can approximate global explanations by aggre-
gating local ones, e.g., for whole dataset classes. In RL, there is no
obvious aggregation function for states that could anchor explana-
tions. Therefore, one of our core objectives is to provide a structured
and globally-consistent visualization of the state sequence space.

Duality of Observable Behavior & Internal Representations –
The state sequence space represents the observable/behavioral view
of an agent. Explanations of agent behavior have to be contextual-
ized in this trajectory space. The hidden internal state representa-
tions determine how the agent acts in the environment. Therefore,
understanding the internal representations is a priority to achieve

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

399

 14678659, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14839 by U

niversitaet K
onstanz K

om
m

unikations-, Inform
ations-, W

iley O
nline L

ibrary on [19/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Metz et al. / Visual Interactive State Sequence Exploration for RL

explainability. In a deep RL agent, the state is represented in the ac-
tivations of one or multiple of its neural networks. Instead of the
observable state-action sequences, these internal representations cre-
ate activation-action sequences. To tackle this challenge, we enable
the joint visualization of observable state sequences s0,s1, ... ∈ S to-
gether with latent states z0,z1, .. ∈ Z . Based on RL-expert feedback,
we chose a high abstraction level to analyze internal representations;
instead of, e.g., displaying absolute activation values, we focus on
the similarity of internal representations.

3.1. Deriving User Tasks from Expert Interviews

Our approach is primarily targets experts in deep– and reinforce-
ment learning. We derived a set of common tasks from an initial
internal draft of user tasks in agreement with surveyed RL experts.
These external experts have a multi-year experience in the design
and training of RL agents and were part of the expert study we
present in a later chapter. In a semi-structured interview, we asked
the experts about their existing workflow for the training and evalu-
ation of RL agents. Specifically, we asked about perceived gaps in
the existing workflows and requested a high-level description of po-
tentially interesting aspects that experts would consider during anal-
ysis. The interviews revealed that evaluation and analysis of trained
agents mainly focus on two aspects: (1) metrics-based evaluation,
e.g., based on achieved accumulative reward, training loss, or task-
specific metrics, and (2) analysis of the agent’s behavior, mostly via
visual inspection. Metrics-based evaluation is covered by existing
visualization tools like TensorBoard [Ten], but due to the demand of
experts, we include summarized metrics to enable a quick overview
and comparison between different models.

In contrast, behavioral analysis is underdeveloped and often re-
stricted to mere visual inspection of videos. Furthermore, none of
the experts regularly uses XAI tools like attributions maps. Based on
their experiences, the experts generally did not expect vast benefits
from analyzing the individual values of hidden representations, such
as network activations. While input attributions were generally rated
valuable, doubts were raised about their validity. Also, attribution
maps were only used to analyze a few special cases. Lastly, a multi-
tude of different RL environments and algorithms were used among
our participants. Hence, tools for explainable RL need to cover a
broad range of possible scenarios, relying on the basic conceptual
framing of reinforcement learning (as presented in Section 2).

These interviews aimed to validate a set of user tasks and func-
tional requirements. Therefore, these interviews were conducted be-
fore introducing the proposed visual analytics workflow to the expert.
Based on these observations, we derive a set of requirements: The
tool should integrate well with existing metric-based evaluation tools
and serve as an extension of established workflows to the domain
experts. It should enable behavioral analysis on different levels of
detail, allowing for detailed diagnosis of individual decisions on de-
mand. Internal representations should be visualized on a high level of
abstraction, i.e., the inspection of individual network activations was
of low importance to the experts. Lastly, the tool must enable sim-
ple switching between different models and checkpoints. Based on
analyzing these requirements, we identify the following four tasks:

(T1) Analyzing high-level behavior of trained agents, with the
option of detailed diagnosis. An expert must be able to capture

the behavior across whole episodes. In particular, they are inter-
ested in spotting behavioral patterns that persist between multiple
episodes or special cases and outliers. The application must, there-
fore, also provide multiscale interactions to investigate behavior
in smaller sub-sequences. Lastly, the expert might be interested in
additional metrics and statistics to evaluate the quality of agents.

(T2) Compare policies between runs & different training
stages. Experts can compare agents to previous versions and other
configurations and designs. Analyzing different checkpoints en-
ables model developers to understand the training process and
find reasons for stagnation or failure. Comparison can guide de-
velopers and put an agent’s performance into context.

(T3) Understanding the reasons behind an agent’s decision-
making. This includes an interpretable view of a policy’s internal
representations at different scales. The expert must be able to spot
overlapping and diverging internal representations of states. They
should be able to investigate “junction points” in detail, e.g., by
closely analyzing input attributions affecting single decisions and
understanding which factors might lead to different decisions.

(T4) Get actionable insights from the analysis of agents. As
part of an iterative development process, experts can assess the
effect of changes across different designs, architectures, and even
environment configurations. Based on analysis and comparison,
experts should be able to derive clear steps for improvement.

4. Visual Analytics System: VISITOR

Based on the given user tasks, we designed VISual Interactive
STate Sequence ExplOration for Reinforcement learning (VISITOR)
as a visual analytics interface to visualize, explore and compare
RL agents. Figure 3 shows the four main views embedded into a
common user interface: (1) a state sequence embedding view [E],
(2) a reward view [R], (3) a step detail [A], and (4) a model list
[M]. Each of the main views is applicable across the presented use
cases and can be further customized to the specific requirements of
the individual use case. Not visible in Figure 3, a sidebar contains
controls of settings for the collection of state sequence data, as well
as the settings for generating the embedding charts.

The main interactions are enabled by the linked state sequence
embedding and reward views. In the reward view, the user can freely
choose a time step via a slider according to patterns found in the re-
ward function. Depending on the chosen scenario which we have
described in the requirements, the views can be adapted. Task T1,
analyzing the high-level behavior of an agent, can be seen as the
default case and therefore is facilitated by the default configuration
of the views (as seen in Figure 3). To support task T2, analyzing
multiple policies, the model list provides small multiples, and col-
oring/highlighting to differentiate different policies is available. To
accommodate user task T3, understanding of behavior, the envi-
ronment detail view, and action probability view, paired with fine-
grained time controls, allows a detailed diagnosis of decisions. Task
T4 is facilitated by the integration of VISITOR in an automated train-
ing and data generation framework, including experiment tracking
that allows quick following-up on new results after design choices.

A major challenge directly emerging from the user tasks concerns
the scalability of the application. An effective analysis of behavior
over training might require looking at dozens of episodes, each of
which might contain thousands of individual state-action transitions.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

400

 14678659, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14839 by U

niversitaet K
onstanz K

om
m

unikations-, Inform
ations-, W

iley O
nline L

ibrary on [19/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Metz et al. / Visual Interactive State Sequence Exploration for RL

[R] Reward View

[E] State Sequence Embedding 
with Semantic Annotations

[D] Step 
Details

[M] Model 
List

Figure 3: The VISITOR interface applied to game-play sampled from a trained RL agent in the Atari game Breakout. The state sequence
embedding view [E] shows a global overview of the state space and transitions. Convex hulls highlight connected clusters. Additional layers
and annotations are available. The linked interactive reward view [R] captures the temporal structure of the sequences: the reward is plotted
over steps. The step detail view [D] shows predicted action distribution and annotations. The model list [M] allows for easy model comparison.

Existing tools and solutions using state space projections are not
fully suited for full analysis because they lacked appropriate user in-
teractions [ZZM16], were not designed to scale [WZY∗21, JVW20],
or lacked RL-specific filtering and information [HSH∗21, BSH∗15].
To facilitate the exploration and comparison of potentially large state-
sequence sequences, our developed interface implements overview
with highlighting of important information, filtering and zooming
interactions, and details on demand [KAF∗08] for state-action se-
quences in an RL context:

• Overview: The model list gives a metrics-based summary
of the available models; at a high zoom level, single states are
abstracted using density estimation or aggregation of trajectories.
Users can select potentially interesting episodes based on patterns
in the model list or by spotting value outliers in the aggregated
state space embedding.
• Filtering and zooming: Sets of episodes can be selected and

visually compared in a common embedding space. A large range
of different values can be overlayed onto the state embedding
view or reward view for detailed analysis. Four separate views
show separate information, like state-activation mapping.
• Detail on demand: Single states and sequence fragments can

be selected and investigated. Detail labels and images representing
single states are revealed at appropriate zoom levels. Consecutive
states are visually highlighted in relation to the selected states.

4.1. State Sequence Embedding View

To provide an intuitive and effective visualization of state sequences
in reinforcement learning, we opted for a 2D embedding. Reinforce-

ment learning often involves high-dimensional state spaces, making
it difficult to visualize and directly analyze the relationships between
states. By employing 2D embeddings, we can reduce the complexity
of the state space and facilitate easier visualization and exploration
of RL agents’ behaviors and decisions. It allows users to easily com-
prehend and analyze the relationships between states without having
to deal with the intricacies of high-dimensional data. We observed
that UMAP [MHSG18] generally achieved superior results com-
pared to PCA or t-SNE [vdMH08] because it struck a favorable bal-
ance between global and local expressiveness. Additionally, we opti-
mize the embedding methods by computing globally consistent em-
beddings, i.e., all states are projected into a shared embedding and by
using actions as additional information to encode state transitions via
an action-angle optimized UMAP embedding. In the following, we
briefly introduce the four views for the state sequence embedding:

State Space View Custom color scales can be applied to states, such
as step reward, chosen action, and value prediction. An adaptive
color scale displays the currently selected scale’s meaning and value
range. States are connected by trajectories highlighting the temporal
flow of an episode within the embedding. Users can select a state
by clicking, which influences the linked reward and step detail
view. Users can also decide to show immediately proceeding or
following states via a colored trace line. The length of the past
and future traces can be adapted by the user. This makes it easy
to follow a trajectory even with many overlying trajectories. States
and trajectories can be dynamically filtered and highlighted, e.g.,
via a selection in the reward curve plots or a selection of single
episodes, checkpoints, or models. The states inside the embedding

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

401

 14678659, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14839 by U

niversitaet K
onstanz K

om
m

unikations-, Inform
ations-, W

iley O
nline L

ibrary on [19/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Metz et al. / Visual Interactive State Sequence Exploration for RL

are automatically enriched via labels highlighting relevant states,
such as episode starts. We found over-plotting to be problematic
for large state spaces. We target this problem with a semantic zoom
functionality: On a high zoom level, only density estimation plots
are visible. When zooming in, additional details such as trajectories,
states, and thumbnail images showing single states are revealed.

Figure 4: Details at the maximum
zoom level, including thumbnail im-
ages and the step indicator

As visible in the maxi-
mum zoom level, the step
marker with past and fu-
ture traces is displayed
in Figure 4. Highlighted
states stay permanently
visible across zoom lev-
els. As interpreting pat-
terns or clusters in state
space may be unclear
without labels, we sup-
port progressive annota-
tion and labeling, visual-
ized in Figure 5. We use
a spatiotemporal clustering algorithm (ST-DBSCAN [BK07]) to pro-
pose potential clusters that can be labeled by the user. The proposed
clusters are visualized as convex hulls. By choosing a clustering al-
gorithm that incorporates the temporal dimension, tightly connected
sequentially areas of the state sequence space are well visible. The
annotation is propagated to all underlying states and can be used in
all other views. The expert can progressively label the state space,
which improves knowledge generation. Figure 1a) shows this view
with reduced visual options.

Decision Point View Compared to the state space view, the deci-
sion point view is designed to emphasize decision points inside the
episodes, i.e., states at which the behavior of different policies di-
verges from each other. These points are often difficult to spot in
state-focused embeddings, especially if only some overlapping tra-
jectories reach the state. To enable the visual inspection of these
points, the view focuses on visualizing the trajectories, with the
states only visible on demand. We want policies that are aligned to
merge visually, while the states at which the trajectories split should
be highlighted. We use edge bundling by first merging states based
on a defined minimum distance. Transitions between states that are
connected to the same merged start and state are then merged. Com-
pared to previous work, which, e.g., assumes chess with directly co-
inciding board positions [HSH∗21, EHA∗22], we allow continuous
states and image observations which might be very similar but not
equivalent. The state merging ensures that very similar states are
treated as single states. We represent the size of the merged states
by radius in the visualization. We encode the number of underly-
ing trajectories by adapting the width of the line. The width of the
line is normalized with the maximum amount of bundled lines. De-
cision points are states which represent a split of different trajec-
tories: We identify these states by tracing the computing states in
which the number of incoming and outgoing connections changes.
Because similar episodes will be bundled into a common connec-
tion, we can assume that a change of connections indicates either a
policy branching off or a policy merging with other policies again.
The change of in- and outgoing connections is mapped onto a color
scale. Figure 1b) shows the reduced visualization of the state space.

Mapping between Observations and Network Activations One
goal of our workflow is to uncover the relationship between the ob-
servable behavior of an agent, and the internal representations. In
the case of deep RL, these internal representations correspond to
network activations. The tool implements a side-by-side plotting of
observable states, equivalent to the previous views, and projection
of the network activations. Then, states selected in the left observa-
tion embedding are visually connected to the corresponding states
in the network activation embedding on the right side. With this
view, analysts can uncover if an agent is not yet able to distinguish
between different observable states because internal representations
are not disentangled. We also enable a reverse-mapping by selecting
a region in the right space. We have found that this view is insight-
ful for analyzing multiple training checkpoints of the same model
by revealing how the internal representations change over training
and how they might be connected to specific predictions. Figure 1c)
highlights how states and activations are visually connected.

Transition Embedding Finally, Figure 1d) shows the transition
embedding view. Here, instead of computing and visualizing an
embedding of states, we instead visualize an embedding of the state-
to-state transitions, including the performed action. In particular,
instead of embedding the states, we use the differences between
states as a basis for two-dimensional embeddings. Furthermore, the
action is appended to create a feature vector as input to the UMAP
algorithm. To visually differentiate these from normal states, they
are visualized as small diamonds colored according to the chosen
action. Highlighted transitions are visually connected with both
states, which are plotted in the background of the view. The view
allows experts to identify related transitions across episodes.

4.2. Reward Graph & Detail View

The main curve of the reward view shows the reward for each con-
tinuous step of the sampled episodes. To better enable analysis, a
user can switch between three modes: (1) The reward for each step,
(2) the cumulative episode reward, and (3) the future accumulative
reward in the episode, which corresponds to the true value. The sec-
ondary curve can be changed by the user to several custom met-
rics (connected to the available color scales in the embedding view).
Users can, e.g., display the value prediction of the agent with the
aforementioned ground-truth value, to spot discrepancies between
predicted and real value. A discrepancy indicates an agent is not be-
ing fully trained on the affected parts of the state space. Because
values for each step can be passed via the standardized info for each
step (see [BCP∗16] for details), a user-defined metric can be dis-
played in the graph, and accordingly chosen in the embedding state
color scales. This is visualized in Figure 5. The user can interact
with the reward plot to filter and highlight regions, which are propa-
gated to the embedding view. The user can select value ranges, either
to highlight via squared shapes instead of circles; or hide parts of
the sequences. A time slider shows the correctly selected time step
and lets the user jump to an arbitrary step in the sampled episodes.
Below the reward chart, a compact hierarchy plot reveals the struc-
ture of the sampled episodes. Via a slider or control buttons, the user
can switch the selected time step with varying levels of granular-
ity. Linked to the other views, a detail view allows the fine-grained
analysis of single steps. By selecting a step via the time slider or in

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

402

 14678659, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14839 by U

niversitaet K
onstanz K

om
m

unikations-, Inform
ations-, W

iley O
nline L

ibrary on [19/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Metz et al. / Visual Interactive State Sequence Exploration for RL

Figure 5: Reward View and linked annotations.

the embedding view, the environment details and action distribution
are displayed. By default, a state rendering and annotations are dis-
played for the selected state. On-demand, additional details like the
action distribution, raw input observations, and action distribution
can be displayed. An environment rendering shows the internal state
of the environment. Below the rendering, additional state-specific in-
formation like step reward, value prediction, steps until episode end,
etc., is available. The raw observations passed to the agents can be vi-
sualized on demand. The raw input can deviate significantly from the
rendering, e.g., if vector-valued observations are passed to an agent.
The action probability diagram shows the distribution of predicted
probabilities for actions at each state. The selected action is high-
lighted in green. This view allows the user to analyze the certainty
of a predicted action, e.g., and to spot alternative decisions. For each
state, an input attribution view visualizing input feature importance
is available. The input attribution view is linked to the action proba-
bility view and shows the input attributions for the selected action.

4.3. Model List

As a last element of the approach, we introduce a model list, which
gives an overview of the different benchmarked models. For each
model, a separate card is rendered. Each card contains a summary
glyph, which gives the most important statistical metrics like an
average reward, episode length, or reward frequency (i.e., how often
an agent achieves a reward). As a glyph, we choose a bar chart due
to its familiarity with the involved experts. The size of the individual
bars is normalized across the different models, which enables us to
visually compare metrics for the different models. By hovering over
a bar, the true value is displayed. Finally, users can expand the model
cards to access additional information. This includes previously
added model descriptions or tags. Further, an episode small multiple
shows the accumulative reward for each episode sampled for a

specific model. Highlighting states also affects the small multiples
reward charts. The small multiples allowed experts to assess the
performance across different episodes and create a visual mapping
between the bottom reward chart and the single episodes. The model
list is displayed in the right-side panel in Figure 3.

5. Evaluation: Expert User Study

We evaluate the use cases in a series of guided expert studies. Experts
were selected based on their familiarity with machine learning in
general and reinforcement learning specifically. We first conducted
an expert study with six participants: Five of the surveyed experts
(E1-E5) have multi-year practical and theoretical experience in rein-
forcement learning research with an academic background. Specifi-
cally, these five experts had experience with training and evaluating
custom agents for different types of environments. This background
allowed us to generate extremely insightful feedback based on hands-
on experience. We have discussed both conceptual questions, as well
as the actual implementation with the experts. One remaining ex-
pert (E6) has a more theoretical focus and less practical experience.
While most experts were familiar with the scenario of Atari, they did
not have detailed knowledge of the environment dynamics and agent
strategies. A slight exception to this was the game of Breakout, in
which the dynamic of tunnel-digging and eventual breakthrough was
known to most participants based on anecdotal knowledge. The RL
domain experts were generally not familiar with visual analytics but
used experiment tracking tools like Tensorboard, Weights&Biases,
as well as custom environment-specific visualizations.

Based on the first expert study feedback, we updated the tool,
adding multiple new layers to the embedding view, as well as a
model list. We report a detailed list of changes in the supplementary
material. Most notably in the first study, experts did not use the em-
bedding view to its full potential. We, therefore, focused on improv-
ing this aspect by adding additional layers and visual abstractions. A
second shortcoming was the difficulty of comparing multiple agents
head to head. We addressed this issue by introducing a model list
view, which allows for quick metrics-based comparison and selec-
tion of models. We performed a second-phase expert study to evalu-
ate the introduced changes. Specifically, two experts (E1, E2) of the
first study, as well as two additional participants (E7, E8) reviewed
the updated implementation. We asked the experts familiar with the
tool to comment on changes made compared to the previous version.
The additional participants also were active as research scientists in
ML research, with E7 having a more theoretical background and E8
being very familiar with a broad range of areas in machine learning.
With these experts, we went through the three use cases but also fo-
cused on feedback specific to the added visualizations.

5.1. Study Methodology

We evaluate the utility of the tool in three separate scenarios, using
three Atari environments as a basis for analysis. Proceeding to the
actual study, an initial free exploration phase enabled the domain
experts to get familiar with the tool and explore its functionalities.
While the participants were supported by a study leader, we chose
minimal intervention in this initial phase to assess the intuitiveness
and initial comprehensibility of the tool. Participants were not given
a demo or video demonstration before this initial demonstration

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

403

 14678659, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14839 by U

niversitaet K
onstanz K

om
m

unikations-, Inform
ations-, W

iley O
nline L

ibrary on [19/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Metz et al. / Visual Interactive State Sequence Exploration for RL

phase. In a second experiment phase, three tasks were presented to
each participant, with approximately 20 minutes for each task:

1. Analysis of a single agent in the game of Breakout. Participants
were asked to first describe the general strategy and success of the
agent. Then they were asked to identify success and failure events
and come up with possible explanations for the identified events.
They were also tasked with giving a suggestion for improvement
(addressing tasks T1, T4).

2. Describing the evolution of a policy during training. As an ex-
ample, the game Seaquest was chosen. Here, the participants
were tasked to describe how the policy and the agent’s behavior
changed during training. In particular, the experts were asked to
identify potential bottleneck skills, i.e., skills that are required to
progress further in the game. (T2, T3)

3. Comparison of agents in the game of MsPacman (a variant of
the popular original Pacman arcade game). Here, the experts
were asked to compare the characteristics of two different agents
trained in different training configurations. The comparison was
requested both in terms of performance and behavior. Finally, the
experts were asked which agent (and in extension training con-
figuration) to prefer, and to reason about the effect of parameter
settings. (T2, T3, T4).

For each of the three tasks, interference was limited to the sugges-
tion of tool functionalities, and the review of intermediate results.
After solving the tasks via self-developed strategies, we explicitly
asked participants to comment on previously unused functionali-
ties and visual elements. This approach allowed us to observe the
participant’s learning curve and independent problem-solving with
relatively little bias, while still requesting opinions on all major ele-
ments of the application.

5.2. Expert Case Study Results

In the following, we give brief descriptions of the three use cases.

5.2.1. Evaluation of a Single Policy

We chose the Breakout environment for our initial use case due to
its simplicity and familiarity, as illustrated in Figure 3. The experts
were tasked with analyzing an agent trained using a policy-gradient
algorithm (PPO [SWD∗17]) to sub-optimal performance.

The initial study revealed the effectiveness of combining the
linked temporal reward view, individual state renderings, and the
embedding view for exploring state sequences. The reward curve
served as a valuable anchor, enabling experts to easily identify inter-
esting states, differentiate episodes, and navigate within episodes.
By examining the reward view alongside visual inspection of sin-
gle states, experts quickly recognized the sub-optimal performance
of the presented agent. They identified a "breakthrough" event, and
linked it to the state sequence embedding space. Overall, the experts
rated the approach’s suitability for the first use case favorably, with
an average score of 6/7 (Std.Dev. 0.57).

However, the state sequence embedding views were often under-
utilized as they were challenging to interpret and sometimes over-
whelming. After a detailed explanation of the methodology, most
experts were able to partially understand the relationship between
in-game states and positions in the state embedding. We observed

that we needed to encourage participants to fully utilize the embed-
ding, for example, by highlighting the possibility to change color
scales, zooming, or filtering in the reward view.

To address this concern, we introduced additional view options,
which improved the overall understanding of the embeddings and
provided clearer distinctions between observation and latent repre-
sentations. In particular, the decision point view was well received
for its visual simplification of the state sequence space, as expressed
by E7: "[the] decision point view is actually my favorite." The four
participants of the second expert study rated it highly, with an aver-
age score of 5.5/7 (Std.Dev. 1.1).

5.2.2. Describing the Evolution of a Policy over Training

In the second use case, we selected the Seaquest game as the en-
vironment, where the agent must shoot enemy entities to collect
points while managing limited oxygen storage. The game consisted
of 5 episodes each for 5 checkpoints: the initial random agent, the
fully trained agent, and 3 intermediate checkpoints. We performed
this use case with 5 out of the 8 experts due to technical difficulties
causing delayed user input.

By analyzing the reward chart, experts identified a positive train-
ing progression, with the random agent achieving short episodes
and small rewards, and the fully trained agent showing much bet-
ter results. All experts independently identified a breakthrough in
training, which led to significantly higher episode rewards. They
confirmed through visual inspection that the agent learned to refill
oxygen at the surface, thereby prolonging the game.

Two experts first identified this behavior via the state sequence em-
bedding view, which displayed a distinctive pattern and emergence
of clusters in the global state space. They inferred the agent’s general
strategy and observed that the y-position in the embedding space
roughly corresponded to the agent’s position in the environment.
The random agent’s states appeared as a separate cluster, as it mostly
acted in the bottom part of the screen. The x coordinate in the state
sequence space strongly correlated with the value prediction of the
state, leading to a characteristic pattern for the refilling behavior. The
value function coincided with the oxygen level, acting as a strong
indicator of the remaining episode length and value estimation. The
5 participants in this use case evaluation rated the application’s gen-
eral utility highly, with an average score of 6/7 (Std. Dev. 0.63).

The introduced model list provided additional benefits, enabling
easy comparison between model checkpoints based on key metrics
like rewards, informing model selection and subsequent analysis.
Experts noted that reward stagnated during training after an initial
improvement, attributable to the agent’s inability to overcome the
specified behavior of collecting divers before refueling.

5.2.3. Comparison of Two Policies

In the final use case, we selected the MsPacman game to test the
user’s ability to directly compare two trained policies with slightly
different training configurations. The state sequence space for this
game appeared less contiguous and more fragmented into smaller
clusters, each showing homogeneity in various properties. Experts
identified a re-emerging pattern in the reward view and observed
that both agents could get stuck at different locations. These "stuck

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

404

 14678659, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14839 by U

niversitaet K
onstanz K

om
m

unikations-, Inform
ations-, W

iley O
nline L

ibrary on [19/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Metz et al. / Visual Interactive State Sequence Exploration for RL

Figure 6: The figure shows an exemplary analysis workflow during
the comparison of two models: First, a state of interest is highlighted
in the decision point view. The state is annotated and highlighted,
to be further investigated. Different views, e.g., reveal how different
models diverge at this point and show that states are indeed mapped
to different locations in the latent space. The difference in probability
distributions also shows the different preferences.

states" were evident in the state embedding space, especially when
using the action color scale. Most experts recognized that agents got
stuck at consistent points across different runs. Experts generated
hypotheses for agent behavior, with one concluding that agent 1
got stuck in a corner due to the absence of an immediate reward.
During the comparison, agents could split the embedding view
window, allowing them to focus on different regions of the state
space, including separate controls and color scales.

The initial expert study rated the tool’s suitability for compari-
son lower than for other use cases, with a score of 4.4/7 (Std.Dev.
0.63). Experts suggested improvements such as side-by-side state
comparisons and synchronous replay of environment detail views.
In response, we increased the visual differentiation between models
in the reward view and introduced new views like decision point and
activation mapping views to support a more comprehensive analysis
of multiple policies, as shown in Figure 6.
These improvements led to a notable increase in the tool’s suitabil-
ity rating for comparison, with a score of 6.0/7 (Std.Dev. 0.0) from
two new experts. Second-time participants also provided positive
feedback on the enhanced workflow for comparing agents.

5.3. Qualitative Feedback

General expert feedback on the application was generally positive,
despite some smaller technical issues occurring. The experts shared
some ideas for further improvement, which were partly already inte-
grated into the final version of the implementation: These sugges-

tions include additional color scales, like steps until the end of an
episode (E2), a better visual distinction between different episodes,
and models in the reward view (E3, E4) increasing the size of the
step selection slider in the reward view (E3).
An important aspect of the usability of the tool is the time experts
need to explore and learn the tool’s functionalities. Here, the compar-
atively low number of linked views was advantageous because ex-
perts were able to explore all main components of the interface in a
short amount of time. Furthermore, we chose a few nested or hidden
interfaces which contributed to the tool being perceived as compact.
In earlier iterations of the prototype, instead of providing explicit
controls of e.g., the content displayed in the state sequence embed-
dings, we more heavily relied on indirect ways to determine the dis-
played information, in particular via semantic zoom. However, we
found providing a selected set of explicit and meaningfully named
controls helped the expert users to better interpret the semantics of
the shown visualizations, in particular the state sequence embed-
ding. Looking at the state-sequence embedding, experts sometimes
failed to make sense of the displayed visual representations. Giving
clear options such as State Space or Decision Points, further empha-
sized by sketched visualizations helped experts to better interpret
the shown plots. In general, we also added multiple labels or descrip-
tions and improved the onboarding with an introductory modal at
application start-up, and a dedicated explanation of the embeddings.

All experts, particularly those who train agents regularly, ap-
proved the potential usefulness of the tool after the study and could
imagine using the tool for certain use cases in the future once avail-
able. Some experts worried about the tool being difficult and lengthy
to set up and the need to save and collect episode data. These experts
were thus pleased with the existing integration into common frame-
works and automated data generation. The potential ease of integra-
tion into the existing workflow, as well as the tool being agnostic to
algorithm and environment, but also extendable, was well received.

5.4. Quantitative Feedback

We found VISITOR to be effective in supporting users in the pre-
sented use cases: In the initial user study, we found all experts to
effectively analyze and describe learned agent behavior. In a post-
experiment survey, the experts rated ease of use and effectiveness
as high (5.2/7, Std.Dev. 0.68), completeness as very high (5.6/7,
Std.Dev. 0.45), ease of use generally high (4.9/7, Std.Dev. 0.98), and
reported generally low levels of frustration except for limited techni-
cal errors (2.6/7 with 1 meaning low frustration). The interaction be-
tween environment rendering, reward chart, and time slider, which
quickly felt familiar to all experts with experience in training RL
models, ensured basic utility across all tasks and scenarios. State Se-
quence embeddings, detail view, and action probability view added
additional abilities to the analytical capabilities of agents. The addi-
tional design elements were well received by the participants of the
second user study. The additional views were rated highly, with both
second-time participants confirming a notable improvement in the
application. For T1, 8/8 experts could identify critical events like the
“breakthrough” or episode/game ends. For T2, 4/5 experts surveyed
for the second task were able to not only spot the behavior of the ini-
tial untrained agent as an outlier but also found the critical skill of
“refilling oxygen” which was only available to agents progressed fur-
ther in the training. We evaluate T3 multi-faceted as it is harder to de-

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

405

 14678659, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14839 by U

niversitaet K
onstanz K

om
m

unikations-, Inform
ations-, W

iley O
nline L

ibrary on [19/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Metz et al. / Visual Interactive State Sequence Exploration for RL

fine: In the Breakout environment, 6/8 experts managed to spot nar-
row misses of the paddle, i.e., the expert missing shots it should have
been able to catch by performing an imprecise action just before im-
pact. In the Seaquest environment, only 2/5 experts were able to spot
the collection of divers as a necessary element enabling the game
mechanic of refilling. Finally, in the MsPacman use case, 6/6 experts
correctly identified the stagnation of collected reward and were able
to identify the underlying cause of the behavior. Finally, experts also
were able to address use case T4. In particular, 6/8 experts correctly
identified a change in sampling strategy (from sampling the distri-
bution to just choosing the action with the highest probability) as an
effective counter-strategy, preventing some narrow misses.

6. Discussion

VISITOR is designed to be agnostic to the domain, the environment,
or the algorithm. This greatly improves its applicability to a wide
range of different scenarios, both in research and in real-world ap-
plications. Therefore, evaluating the tool in varying application con-
texts beyond standard benchmark environments would be very in-
teresting. The current tool is mainly targeted and was evaluated by
RL experts. For future applicability, it is interesting if domain ex-
perts, e.g., engineers that are only familiar with basic RL concepts,
can generate value for the developed application. RL, as a whole, is
not yet at the level of commodification that other types of models,
such as image classification or language models are. As VISITOR is
highly modular, one could imagine extending it towards particular
tasks, as we have seen in past work, e.g., heatmaps for spatial navi-
gation tasks [JVW20, HLB∗20], or the custom interactive rendering
of the environment state, etc.

We already applied our application in one exemplary medical do-

Orange: 
Trajectory 
from low-skill 
agent

Beige: 
Trajectory 
from high-skill 
agent

One cluster 
represents a 
subroutine

Step-wise 
performance plotted 
in reward view

Figure 7: The figure shows two trajectories in a complex real-world
use case loaded into VISITOR. Orange and beige each correspond
to a separate state sequence produced by two separate agents.

main, visualizing medical device trajectories during simulated op-
erations. This application showcases our approach’s scalability. Al-
though conceptually simple, the chosen games exhibit challenges
like high-dimensional image-based observation spaces, episodes
spanning thousands of steps, and varying behavior across models.
Single episodes span thousands of steps with complex behavior in
three-dimensional space. Figure 7 displays the joint embedding of
two trajectories by agents with varying skill levels. Aligned trajecto-
ries represent the same procedure, with distinguishable clusters cor-
responding to sub-procedures. Inexperienced agents need more time
and move the instrument to a larger degree, which is clearly identifi-
able in the embeddings. Future iterations plan to visualize simulated
behavior and agent learning via reinforcement learning. While cer-
tain scalability limitations remain, in particular when the computed
embeddings are not able to produce embeddings that allow for a dif-
ferentiation between different states and clusters, it highlights the
flexibility of our approach.

Similar to Figure 7, our approach suits itself to, e.g., compare
learned behavior with expert trajectory data and is therefore well
applicable to imitation learning. Furthermore, plotting the full state
space of a training RL agent could be used in active learning sce-
narios, e.g., by a human pointing out under-explored parts of the
state space. However, by default, the embeddings cannot show re-
gions of the state space that are yet unexplored, i.e., do not have any
data points. We like that note that the tool is also applicable in sce-
narios with meaningful 2D coordinates, e.g., in a navigation prob-
lem [JVW20]. Here, instead of 2D coordinates from a projection,
we can directly use 2D coordinates from an environment. VISITOR
is applicable to such a use case without modifications.

Finally, VISITOR still operates on the scale of a relatively small
set of checkpoints or models and is targeted at development as well
as potential verification and presentation to end-users. Past work has
already explored workflows targeted at larger sets of different mod-
els/agents during training (e.g., Saldanha et al. [SPBA19]). While
the model list is a first step towards this goal, extending the inter-
actions presented in VISITOR with capabilities to compare and
browse even larger sets of different agents and model configurations
could further improve experimentation and development.

7. Conclusion

We presented VISITOR, a versatile, general application for the inter-
active analysis of sequences generated by RL agents. The application
provides linked views like a 2D state sequence embedding, a model
list and a temporal reward view. The state sequence embeddings are
enriched with abstractions and annotations to support the exploration
of complex spaces. We showcase how the tool can be applied to ana-
lyzing single policies, understanding the evolution of a policy during
training, and comparing agents. The implementation is well-received
among RL experts. The tool is available at: https://visitor.dbvis.de.

Acknowledgement

This work was supported by the German Research Foundation as
part of the priority programme “Volunteered Geographic Informa-
tion: Interpretation, Visualisation and Social Computing” (VGI-
science, priority programme 1894). Funding was partially provided

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

406

 14678659, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14839 by U

niversitaet K
onstanz K

om
m

unikations-, Inform
ations-, W

iley O
nline L

ibrary on [19/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://visitor.dbvis.de


Metz et al. / Visual Interactive State Sequence Exploration for RL

by ETH Zurich. Open Access funding enabled and organized by
Projekt DEAL.

References
[AB18] ADADI A., BERRADA M.: Peeking inside the black-box: A survey

on explainable artificial intelligence (xai). IEEE Access 6 (2018), 52138–
52160. doi:10.1109/ACCESS.2018.2870052. 1

[ADBB17] ARULKUMARAN K., DEISENROTH M., BRUNDAGE M.,
BHARATH A.: A brief survey of deep reinforcement learning. IEEE Sig-
nal Processing Magazine 34 (08 2017). doi:10.1109/MSP.2017.
2743240. 1

[AS19] ANNASAMY R. M., SYCARA K.: Towards better inter-
pretability in deep q-networks. Proc. of the AAAI Conf. on Arti-
ficial Intelligence 33 (7 2019), 4561–4569. URL: https://ojs.
aaai.org/index.php/AAAI/article/view/4377, doi:10.
1609/AAAI.V33I01.33014561. 3

[BCP∗16] BROCKMAN G., CHEUNG V., PETTERSSON L., SCHNEIDER
J., SCHULMAN J., TANG J., ZAREMBA W.: Openai gym, 2016. arXiv:
arXiv:1606.01540. 6

[BK07] BIRANT D., KUT A.: St-dbscan: An algorithm for clus-
tering spatial–temporal data. Data and Knowledge Engineering
60, 1 (2007), 208–221. Intelligent Data Mining. URL: https:
//www.sciencedirect.com/science/article/pii/
S0169023X06000218, doi:https://doi.org/10.1016/j.
datak.2006.01.013. 6

[BNVB13] BELLEMARE M. G., NADDAF Y., VENESS J., BOWLING
M.: The arcade learning environment: An evaluation platform for general
agents. Journal of Artificial Intelligence Research 47 (jun 2013), 253–
279. doi:10.1613/jair.3912. 3

[BSH∗15] BACH B., SHI C., HEULOT N., MADHYASTHA T.,
GRABOWSKI T., DRAGICEVIC P.: Time curves: Folding time to visual-
ize patterns of temporal evolution in data. IEEE Transactions on Visual-
ization and Computer Graphics PP, 99 (2015), 1–1. doi:10.1109/
TVCG.2015.2467851. 3, 5

[DLM∗20] DULAC-ARNOLD G., LEVINE N., MANKOWITZ D. J., LI J.,
PADURARU C., GOWAL S., HESTER T.: An empirical investigation of
the challenges of real-world reinforcement learning. arXiv e-prints (Mar.
2020), arXiv:2003.11881. arXiv:2003.11881, doi:10.48550/
arXiv.2003.11881. 1

[EHA∗22] ECKELT K., HINTERREITER A., ADELBERGER P.,
WALCHSHOFER C., DHANOA V., HUMER C., HECKMANN M., STEIN-
PARZ C., STREIT M.: Visual exploration of relationships and structure
in low-dimensional embeddings. IEEE Transactions on Visualization
and Computer Graphics (2022), 1–1. doi:10.1109/TVCG.2022.
3156760. 1, 3, 6

[GKDF18] GREYDANUS S., KOUL A., DODGE J., FERN A.: Visualizing
and understanding Atari agents. vol. 80 of Proc. of Machine Learning Re-
search, PMLR, pp. 1792–1801. URL: http://proceedings.mlr.
press/v80/greydanus18a.html. 2, 3

[HAB∗20] HRISTOV Y., ANGELOV D., BURKE M., LASCARIDES A.,
RAMAMOORTHY S.: Disentangled relational representations for explain-
ing and learning from demonstration. In Conference on Robot Learning
(2020), PMLR, pp. 870–884. 3

[HCDR21] HEUILLET A., COUTHOUIS F., DÍAZ-RODRÍGUEZ N.: Ex-
plainability in deep reinforcement learning. Knowledge-Based Systems
214 (2021), 106685. URL: https://www.sciencedirect.com/
science/article/pii/S0950705120308145, doi:https:
//doi.org/10.1016/j.knosys.2020.106685. 3

[HIB∗] HENDERSON P., ISLAM R., BACHMAN P., PINEAU J., PRECUP
D., MEGER D.: Deep reinforcement learning that matters. In Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, AAAI’18/IAAI’18/EAAI’18, AAAI Press. 1

[HLB∗20] HE W., LEE T. Y., BAAR J. V., WITTENBURG K., SHEN
H. W.: Dynamics explorer: Visual analytics for robot control tasks
involving dynamics and lstm-based control policies. IEEE Pacific Vi-
sualization Symposium 2020-June (6 2020), 36–45. doi:10.1109/
PACIFICVIS48177.2020.7127. 1, 2, 3, 10

[HS97] HOCHREITER S., SCHMIDHUBER J.: Long short-term memory.
Neural Comput. 9, 8 (Nov. 1997), 1735—-1780. URL: https://doi.
org/10.1162/neco.1997.9.8.1735, doi:10.1162/neco.
1997.9.8.1735. 3

[HS15] HAUSKNECHT M. J., STONE P.: Deep recurrent q-learning for
partially observable mdps. CoRR abs/1507.06527 (2015). URL: http:
//arxiv.org/abs/1507.06527, arXiv:1507.06527. 3

[HSH∗21] HINTERREITER A., STEINPARZ C. A., HECKMANN M.,
STITZ H., STREIT M.: Projection path explorer: Exploring visual patterns
in projected decision-making paths. ACM Transactions on Interactive In-
telligent Systems 11, 3–4 (2021), Article 22. URL: https://dl.acm.
org/doi/10.1145/3387165, doi:10.1145/3387165. 2, 3, 5,
6

[Irp18] IRPAN A.: Deep reinforcement learning doesn’t work yet. https:
//www.alexirpan.com/2018/02/14/rl-hard.html, 2018.
1

[JVW20] JAUNET T., VUILLEMOT R., WOLF C.: Drlviz: Understanding
decisions and memory in deep reinforcement learning. In Computer
Graphics Forum (2020), vol. 39, Wiley Online Library, pp. 49–61. 3, 5, 10

[KAF∗08] KEIM D., ANDRIENKO G., FEKETE J.-D., GORG C.,
KOHLHAMMER J., MELANÇON G.: Visual analytics: Definition, process,
and challenges. Lecture notes in computer science 4950 (2008), 154–176.
5

[LSSP21] LIU G., SUN X., SCHULTE O., POUPART P.: Learning tree
interpretation from object representation for deep reinforcement learning.
Advances in Neural Information Processing Systems 34 (12 2021). 3

[MBP∗23] MOERLAND T. M., BROEKENS J., PLAAT A., JONKER C. M.,
ET AL.: Model-based reinforcement learning: A survey. Foundations and
Trends® in Machine Learning 16, 1 (2023), 1–118. 1

[MHSG18] MCINNES L., HEALY J., SAUL N., GROSSBERGER L.:
Umap: Uniform manifold approximation and projection. Journal of Open
Source Software 3, 29 (2018), 861. URL: https://doi.org/10.
21105/joss.00861, doi:10.21105/joss.00861. 5

[MKS∗13] MNIH V., KAVUKCUOGLU K., SILVER D., GRAVES A.,
ANTONOGLOU I., WIERSTRA D., RIEDMILLER M. A.: Playing atari
with deep reinforcement learning. CoRR abs/1312.5602 (2013). URL:
http://arxiv.org/abs/1312.5602, arXiv:1312.5602. 1,
2

[MMSV20] MADUMAL P., MILLER T., SONENBERG L., VETERE F.:
Explainable reinforcement learning through a causal lens. In Proceedings
of the AAAI conference on artificial intelligence (2020), vol. 34, pp. 2493–
2500. 3

[MSHB22] MISHRA A., SONI U., HUANG J., BRYAN C.: Why? why
not? when? visual explanations of agent behaviour in reinforcement
learning. In 2022 IEEE 15th Pacific Visualization Symposium (Paci-
ficVis) (Los Alamitos, CA, USA, apr 2022), IEEE Computer Society,
pp. 111–120. URL: https://doi.ieeecomputersociety.
org/10.1109/PacificVis53943.2022.00020, doi:10.
1109/PacificVis53943.2022.00020. 1, 2

[MSS∗] METZ Y., SCHLEGEL U., SEEBACHER D., EL-ASSADY M.,
KEIM D. A.: A comprehensive workflow for effective imitation and rein-
forcement learning with visual analytics. In 13th International EuroVis
Workshop on Visual Analytics (EuroVA 2022), pp. 19–23. 1

[NIAN] NIKULIN D., IANINA A., ALIEV V., NIKOLENKO S.: Free-lunch
saliency via attention in atari agents. Proc. of Intl. Conf. on Computer
Vision Workshop, ICCVW 2019, 4240–4249. doi:10.1109/ICCVW.
2019.00522. 2, 3

[PCC∗] PAN X., CHEN X., CAI Q., CANNY J., YU F.: Semantic pre-
dictive control for explainable and efficient policy learning. In Proc.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

407

 14678659, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14839 by U

niversitaet K
onstanz K

om
m

unikations-, Inform
ations-, W

iley O
nline L

ibrary on [19/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/MSP.2017.2743240
https://ojs.aaai.org/index.php/AAAI/article/view/4377
https://ojs.aaai.org/index.php/AAAI/article/view/4377
https://doi.org/10.1609/AAAI.V33I01.33014561
https://doi.org/10.1609/AAAI.V33I01.33014561
http://arxiv.org/abs/arXiv:1606.01540
http://arxiv.org/abs/arXiv:1606.01540
https://www.sciencedirect.com/science/article/pii/S0169023X06000218
https://www.sciencedirect.com/science/article/pii/S0169023X06000218
https://www.sciencedirect.com/science/article/pii/S0169023X06000218
https://doi.org/https://doi.org/10.1016/j.datak.2006.01.013
https://doi.org/https://doi.org/10.1016/j.datak.2006.01.013
https://doi.org/10.1613/jair.3912
https://doi.org/10.1109/TVCG.2015.2467851
https://doi.org/10.1109/TVCG.2015.2467851
http://arxiv.org/abs/2003.11881
https://doi.org/10.48550/arXiv.2003.11881
https://doi.org/10.48550/arXiv.2003.11881
https://doi.org/10.1109/TVCG.2022.3156760
https://doi.org/10.1109/TVCG.2022.3156760
http://proceedings.mlr.press/v80/greydanus18a.html
http://proceedings.mlr.press/v80/greydanus18a.html
https://www.sciencedirect.com/science/article/pii/S0950705120308145
https://www.sciencedirect.com/science/article/pii/S0950705120308145
https://doi.org/https://doi.org/10.1016/j.knosys.2020.106685
https://doi.org/https://doi.org/10.1016/j.knosys.2020.106685
https://doi.org/10.1109/PACIFICVIS48177.2020.7127
https://doi.org/10.1109/PACIFICVIS48177.2020.7127
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1507.06527
http://arxiv.org/abs/1507.06527
http://arxiv.org/abs/1507.06527
https://dl.acm.org/doi/10.1145/3387165
https://dl.acm.org/doi/10.1145/3387165
https://doi.org/10.1145/3387165
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.ieeecomputersociety.org/10.1109/PacificVis53943.2022.00020
https://doi.ieeecomputersociety.org/10.1109/PacificVis53943.2022.00020
https://doi.org/10.1109/PacificVis53943.2022.00020
https://doi.org/10.1109/PacificVis53943.2022.00020
https://doi.org/10.1109/ICCVW.2019.00522
https://doi.org/10.1109/ICCVW.2019.00522


Metz et al. / Visual Interactive State Sequence Exploration for RL

of IEEE Intl. Conf. on Robotics and Automation, vol. 2019-May, Insti-
tute of Electrical and Electronics Engineers Inc., pp. 3203–3209. doi:
10.1109/ICRA.2019.8794437. 3

[SB18] SUTTON R. S., BARTO A. G.: Reinforcement Learning: An
Introduction. A Bradford Book, Cambridge, MA, USA, 2018. 2

[SG20] SEQUEIRA P., GERVASIO M.: Interestingness elements for ex-
plainable reinforcement learning: Understanding agents’ capabilities and
limitations. Artificial Intelligence 288 (2020), 103367. 3

[SHS∗17] SILVER D., HUBERT T., SCHRITTWIESER J., ANTONOGLOU
I., LAI M., GUEZ A., LANCTOT M., SIFRE L., KUMARAN D., GRAE-
PEL T., LILLICRAP T. P., SIMONYAN K., HASSABIS D.: Mastering
chess and shogi by self-play with a general reinforcement learning algo-
rithm. CoRR abs/1712.01815 (2017). URL: http://arxiv.org/
abs/1712.01815, arXiv:1712.01815. 1

[SHS∗22] SHI W., HUANG G., SONG S., WANG Z., LIN T., WU C.: Self-
supervised discovering of interpretable features for reinforcement learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 5
(2022), 2712–2724. doi:10.1109/TPAMI.2020.3037898. 3

[SHSW21] SHI W., HUANG G., SONG S., WU C.: Temporal-spatial
causal interpretations for vision-based reinforcement learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence (12 2021).
doi:10.1109/TPAMI.2021.3133717. 3

[SMG22] SINHA S., MANDLEKAR A., GARG A.: S4rl: Surprisingly
simple self-supervision for offline reinforcement learning in robotics. In
Proc. of Conf. on Robot Learning (08–11 Nov 2022), Faust A., Hsu D.,
Neumann G., (Eds.), vol. 164 of Proc. of Machine Learning Research,
PMLR, pp. 907–917. URL: https://proceedings.mlr.press/
v164/sinha22a.html. 1

[SPBA19] SALDANHA E., PRAGGASTIS B., BILLOW T., ARENDT D.:
ReLVis : Visual Analytics for Situational Awareness During Reinforce-
ment Learning Experimentation. In EuroVis (Short Papers) (2019), Euro-
graphics Association, pp. 43–47. doi:10.2312/evs.20191168. 3,
10

[SVZ13] SIMONYAN K., VEDALDI A., ZISSERMAN A.: Deep inside con-
volutional networks: Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034 (2013). 1

[SWD∗17] SCHULMAN J., WOLSKI F., DHARIWAL P., RADFORD
A., KLIMOV O.: Proximal policy optimization algorithms. CoRR
abs/1707.06347 (2017). URL: http://arxiv.org/abs/1707.
06347, arXiv:1707.06347. 8

[Ten] TENSORFLOW: Tensorflow/tensorboard: Tensorflow’s visual-
ization toolkit. URL: https://github.com/tensorflow/
tensorboard. 4

[vdMH08] VAN DER MAATEN L., HINTON G.: Visualizing data
using t-sne. Journal of Machine Learning Research 9, 86
(2008), 2579–2605. URL: http://jmlr.org/papers/v9/
vandermaaten08a.html. 5

[VMS∗18] VERMA A., MURALI V., SINGH R., KOHLI P., CHAUDHURI
S.: Programmatically interpretable reinforcement learning. 35th Interna-
tional Conf. on Machine Learning, ICML 2018 11 (2018), 8024–8033. 3

[WGSY19] WANG J., GOU L., SHEN H. W., YANG H.: Dqnviz: A visual
analytics approach to understand deep q-networks. IEEE Transactions
on Visualization and Computer Graphics 25 (2019), 288–298. doi:
10.1109/TVCG.2018.2864504. 1, 2, 3

[WZY∗21] WANG J., ZHANG W., YANG H., YEH C. C. M., WANG
L.: Visual analytics for rnn-based deep reinforcement learning. IEEE
Transactions on Visualization and Computer Graphics (2021). doi:
10.1109/TVCG.2021.3076749. 2, 3, 5

[ZZM16] ZAHAVY T., ZRIHEM N. B., MANNOR S.: Graying the black
box: Understanding dqns. In Proc. of Intl. Conf. on on Machine Learning
- Volume 48 (2016), ICML’16, JMLR.org, p. 1899–1908. 2, 3, 5

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

408

 14678659, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14839 by U

niversitaet K
onstanz K

om
m

unikations-, Inform
ations-, W

iley O
nline L

ibrary on [19/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/ICRA.2019.8794437
https://doi.org/10.1109/ICRA.2019.8794437
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://doi.org/10.1109/TPAMI.2020.3037898
https://doi.org/10.1109/TPAMI.2021.3133717
https://proceedings.mlr.press/v164/sinha22a.html
https://proceedings.mlr.press/v164/sinha22a.html
https://doi.org/10.2312/evs.20191168
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/tensorboard
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2018.2864504
https://doi.org/10.1109/TVCG.2021.3076749
https://doi.org/10.1109/TVCG.2021.3076749

