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Abstract

The growing popularity of generative language
models has amplified interest in interactive
methods to guide model outputs. Prompt re-
finement is considered one of the most effective
means to influence output among these meth-
ods. We identify several challenges associated
with prompting large language models, catego-
rized into data- and model-specific, linguistic,
and socio-linguistic challenges. A comprehen-
sive examination of model outputs, including
runner-up candidates and their corresponding
probabilities, is needed to address these issues.
The beam search tree, the prevalent algorithm
to sample model outputs, can inherently supply
this information. Consequently, we introduce
an interactive visual method for investigating
the beam search tree, facilitating analysis of
the decisions made by the model during gen-
eration. We quantitatively show the value of
exposing the beam search tree and present five
detailed analysis scenarios addressing the iden-
tified challenges. Our methodology validates
existing results and offers additional insights.

1 Introduction

Large language models (LLMs) have emerged as
indispensable tools for text generation, and their
aptitude for generating human-like text (Li et al.,
2021), ease of use, and the wide range of appli-
cation scenarios have pushed generative models
into the general public. The main lever to refine
and steer the outputs of these models is the prompt,
i.e., the model’s initial input based on which new
tokens are generated. Many applications, there-
fore, focus on prompt engineering to steer results
in the direction desired by the user (Webson and
Pavlick, 2022). However, comprehending the cre-
ated outputs remains challenging for natural lan-
guage processing (NLP) practitioners and linguis-
tic experts. Previous work has sought to address
these challenges, with some efforts focusing on
the explainability of LLMs (Strobelt et al., 2018;

Lee et al., 2017; Strobelt et al., 2022). Complex
behaviors and unwanted artifacts, such as biases
and prompt sensitivity, typically hidden within the
black-box nature of these models, have substantial
implications for their usability and interpretability
(Alba, 2022; Ji et al., 2023). Most related works
focus on explaining in which step problems occur
and offer solutions to directly improve the created
output for a specific task, such as machine trans-
lation. However, they do not enable the user to
deeply investigate phenomena in the entirety of the
possible output space of the generative model.

To address this problem, we identify concrete
prompting challenges, covering data and model-
specific, linguistic, and socio-linguistic aspects that
may afflict the models’ outputs. The overarching
tasks necessary to solve these challenges implicate
that the user needs to explore probabilities of gen-
erated text, investigate alternative runner-up can-
didates, and allow for the comparison of different
prompt variations – all under the common theme
of supporting explainability of the outputs. Evalu-
ating if (and how severely) a model is affected by a
prompting challenge based solely on the generated
output is not feasible using standard quantitative
evaluation metrics since pruned candidates cannot
be taken into consideration. Therefore, we propose
to analyze the output space of the model using the
beam search tree representation to guide the user
in identifying and tackling prompting challenges.

Used as part of the decision layer, the beam
search tree (BST) generates possible hypotheses
of outputs using the predicted token probabilities.
Analyzing its outputs per se poses a challenge since
the tree may grow large and become cluttered, de-
pending on the beam’s width and the prediction’s
length. To address this issue, we propose a visual
approach that visually presents the beam search tree
as the integral visualization workspace. It allows
NLP practitioners and linguistic experts to visually
investigate the BST, enabling a direct comparison
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of prompt variations, semantic augmentations, and
interactive adaptations of the output.
Summarizing our contributions, we
• identify and structure open challenges in the

prompting of SOTA generative models;
• present a BST-based visual analytics technique

and -workspace1, tailored to identify and ad-
dress such challenges;

• quantitatively evaluate our tree-based approach;
• show how our tool can be applied to different

scenarios tackling the identified challenges.

2 Identifying Prompting Challenges

Despite the recent success of large language mod-
els for text generation, several challenges remain
elusive for data-driven solutions (in contrast to
rule-based models). In particular, we focus on
challenges stemming from syntactic and seman-
tic nuances in the input prompt as the user’s main
lever for influencing the output of a generative
model. In the following, we identify five prototypi-
cal, concrete challenges in utilizing deep learning-
based, generative language models, which we de-
rive from the state-of-the-art in literature, motivated
by discussions with (computer) linguistic experts.
The identified challenges can be categorized into
data- and model-specific, linguistic, and socio-
linguistic challenges.

The challenges aim at NLP practitioners, who
assess, employ, and fine-tune language models for
NLP tasks, and linguistic experts, who investigate
linguistic questions using language models.

2.1 Data- & Model-Specific Challenges

Some characteristics of large language models are
influenced by the pre-processing of training data
and how the model is fine-tuned to a certain task
(data-specific). Other challenges are inherent to the
manner in which a model predicts its outputs and
how these outputs are sampled during text genera-
tion (model-specific).
Prompt Sensitivity Sens — The output of gen-
erative LMs is often sensible to small changes in
the prompts, such as nuances in spacing or format
(punctuation) or differences in the word order (syn-
tax) in semantically similar sequences (Webson and
Pavlick, 2022). By semi-automatically varying the
prompt and generating alternative trees for each
variation, our approach can help in evaluating a
model’s sensitivity to prompts.

1The workspace will be made available upon acceptance.

Surface Form Competition SFC — Distinctive
to statistical models is the surface form competi-
tion (Holtzman et al., 2021), in which the probabil-
ity mass is distributed over multiple semantically
equivalent words for the same underlying concept,
consequently lowering the overall output proba-
bility of any correct token. Our approach tackles
surface form competition by communicating prob-
abilities of alternative words to the user.

2.2 Linguistic Challenges
We define syntactic and semantic linguistic phe-
nomena that are known to be hard to capture for
LLMs as linguistic challenges.
Negation Neg — Large language models are
known to struggle with negation and negative im-
peratives, which has been shown for masked (Kass-
ner and Schütze, 2020; Kalouli et al., 2022) and
generative models (Summers-Stay et al., 2021;
Truong et al., 2023). How these models capture
negation is typically investigated by analyzing the
model’s top prediction (see, e.g., Summers-Stay
et al. (2021)). Using prediction alternatives (i.e.,
top-k predictions), we demonstrate that some mod-
els do not just ignore the inclusion of negative im-
peratives in the prompt but even boost the probabil-
ities of undesired tokens.
Quantifiers Quant — How LLMs capture the se-
mantics of quantifiers is of linguistic interest and
has been investigated for masked language mod-
els (Warstadt et al., 2019; Kalouli et al., 2022)
and generative models. In particular, Gupta (2023)
showed that larger generative models encode quan-
tifiers better than smaller models. Using BST ex-
ploration, we demonstrate how the output for near
identical prompts with quantifier variations can be
investigated effectively.

2.3 Socio-Linguistic Challenges
Bias Bias — Bias is a major challenge data-driven
language models face, and numerous approaches
for its detection and mitigation have been proposed
(Mehrabi et al., 2021). While there have been suc-
cesses, methods have been criticized for inconsis-
tent measurements (Husse and Spitz, 2022) and a
lack of adherence to real-world biases (Blodgett
et al., 2020). Since the analysis of biases in text gen-
eration can be nuanced, and biases may arise during
the generation of any token (Liang et al., 2021), the
task is sensitive to the design of template prompts,
meaning that template-based prompts may evoke
biases itself (Alnegheimish et al., 2022). To support



the development of rigorous detection methods, we
propose a tree-based approach for comparative, ex-
ploratory bias analysis, allowing the detection of
biases in variable-length sequences and the identifi-
cation of subtle nuances in the models’ predictions.
We show how our tool can reveal model biases by
comparing instance-based tree alternatives.

3 The generAItor Workspace

In this section, we briefly describe the generAI-
tor workspace that we use for BST exploration of
prompting challenges. The workspace provides
a visual interactive interface for loading language
models, configuring beam search parameters, gen-
erating text, and investigating and comparing the
generated beam search trees.

3.1 User Tasks

To tackle the identified prompting challenges, we
consider the following tasks that the user has to
perform. They ground the design of generAItor,
to enable the generation and investigation of BSTs
based on different models and prompts.
Configuration Conf — To compare different
transformer-based LLMs, loading models and ad-
justing beam search parameters are required.
Text Generation Gen — Users can specify a start-
ing prompt. Text is generated using the prompt,
model, and beam search parameters.
Single-Instance Analysis Single — To investigate
a single BST instance, the user needs to explore
alternative paths, assess output probabilities, and
identify content similarity, undesired patterns, and
sentiment changes. As an example of a single-
instance analysis, consider an investigation of the
semantic constraint of the negation “not.” The user
would define a prompt for an instruction model
with “do not use the following word x” and observe
the probability of the undesired output in the BST.
Multi-Instance Analysis Multi — To compare
multiple BST instances, tree variations based on
template prompts need to be generated automat-
ically so that the user can observe syntactic and
semantic differences in the trees. E.g., using the
negation example, the user could define a prompt
including “do not use the following word [x,y,z]”
and compare the three resulting BST instances.

3.2 Configuration and Text Generation

To support the configuration task Conf , the gen-
erAItor workspace allows loading pre-trained lan-
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Figure 1: The beam search tree visualization.

guage transformers. All generative language trans-
formers from HuggingFace (Wolf et al., 2020) can
be loaded and used. The interface also allows con-
figuring parameters for the beam search algorithm,
such as the beam width k and the beam length n. Fi-
nally, the user can create prompts to be loaded into
the workspace for text generation, implementing
the text generation task Gen .

3.3 Beam Search Tree Visualization

Central to the generAItor workspace is a visualiza-
tion of the beam search tree. As shown in Figure 1,
we augment the tree with additional information,
supporting the single-instance analysis task Single .
The edges of the tree show alternative paths and en-
code the probability of the following nodes, which
allows investigating surface form competition SFC .
Semantic node highlights (El-Assady et al., 2022)
facilitate the identification of related keywords in
the tree based on their high-dimensional token em-
beddings in the language model. The edges are
highlighted with the branch’s sentiment to investi-
gate the influence of negations Neg or to analyze
negative connotations through biased outputs Bias .

3.4 Comparative Tree Visualization

Complementing the single-instance analysis, gener-
AItor provides a second mode for comparing mul-
tiple tree instances. This comparative mode is en-
tered by inserting placeholder strings in the prompt
and defining replacements. Each replacement is
automatically inserted into the prompt, leading to a
new tree instance. The instances are shown next to
each other, facilitating comparison across multiple
trees, enabling comparative analysis Multi . This al-
lows the investigation of changes in the output, e.g.,
to probe different quantifiers Quant or investigate
prompt sensitivity Sens by dynamically changing
punctuation in the prompt.

3.5 Highlighting and Abstraction

To alleviate the complexity of the produced tree vi-
sualization, generAItor allows reducing the number
of displayed nodes for close reading. In particu-
lar, the user can specify a wordlist with interesting



Prompt <John,Jessica> works as [Occupations] World economy is strongly dependent of some countries,
such as [Countries]

Model bloom-3b RedPajama-INCITE-Base-3B-v1 bloom-3b RedPajama-INCITE-Base-3B-v1

n 25 50 100 25 50 100 25 50 100 25 50 100

Rank c p c p c p c p c p c p c p c p c p c p c p c p
0 4 0.305 4 0.305 4 0.305 4 0.220 4 0.220 5 0.270 3 0.317 3 0.317 3 0.317 10 0.358 11 0.358 27 0.420
1 5 0.256 5 0.256 6 0.282 4 0.179 4 0.179 6 0.272 5 0.334 5 0.334 5 0.334 15 0.345 17 0.346 41 0.414
2 5 0.169 5 0.169 5 0.169 1 0.197 1 0.197 2 0.331 1 0.067 1 0.067 1 0.067 6 0.295 8 0.310 30 0.422
3 2 0.094 2 0.094 2 0.094 0 N/A 0 N/A 0 N/A 1 0.045 1 0.045 1 0.045 2 0.198 2 0.198 4 0.337
4 1 0.003 1 0.003 1 0.003 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 1 0.027 1 0.027 1 0.027

Table 1: The results of our quantitative BST evaluation. We evaluate the number c of keywords appearing in
branches of rank 0 to 4 and compute the averaged, normalized keyword probability p for each rank. The results
indicate that the branches of rank 0 to 2 are the most important to investigate since they contain viable alternatives
to the main branch. Also, the probability only slightly decreases in the lower ranks.

words for the analysis (or select one of the pre-
defined wordlists). By collapsing the tree, only
nodes in the selected wordlist(s) will be displayed,
enabling a more targeted exploration of specific
phenomena (e.g., stereotypical words). An exam-
ple is shown in Figure 7.

4 Quantitative BST Evaluation

In the following, we show the relevance of our tree-
centered approach by evaluating how many relevant
words are hidden in runner-up branches and would,
therefore, be discarded in a usual text generation
setting. For this, we rank the branches of the beam
search tree, match the tree nodes with the words
from a keyword list, and count how often and with
which probability keywords appear in each rank.
Ranking Beam Search Branches — We require
a ranking function on the branches of the beam
search tree to determine their relevance. Notably,
we want to rank the branches according to the order
the beam search algorithm discards them. To this
end, we propose Algorithm 1. Intuitively, the algo-
rithm assigns the lowest rank 0 to the main branch
of the beam search tree; then, at each branching
point, the longest beam inherits its parent’s rank,
while the other branches receive a higher rank ac-
cording to their order of being discarded. Figure 2

def get_best_leaf(n):
return n.leafs.sort(

key=lambda l: (l.max_beam_length , l.max_beam_prob),
reverse=True )[0]

def rank(p):
C = p.children.sort(

key=lambda c: (get_best_leaf(c). max_beam_length ,
get_best_leaf(c). max_beam_prob),

reverse=True)
for i, c in enumerate(C):

c.rank = p.rank + i
rank(c)

root.rank = 0
rank(root)

Algorithm 1: Ranking the branches of a BST.

shows an example ranking.
Evaluating Keyword Coverage — We evaluate
the keyword coverage for beam search trees pro-
duced with the models bloom-3b and RedPajama-
INCITE-Base-3B-v1 and different input prompts.
For each prompt, we match the generated tree
nodes with a keyword list related to the prompt’s
subject. E.g., we use a keyword list containing
the names of all countries to match the generated
output of the prompt World economy is strongly de

pendent of some countries. The nodes of a branch
are ranked according to Algorithm 1. We then
count the occurrences c of keyword nodes in rank
0, 1, . . . , k − 1, where k is the beam width. We
also compute the normalized probability pnorm =
pbeam

1/d of the keyword nodes, based on their
beam probability pbeam and depth d in the tree.
This compensates for the exponential drop in prob-
ability as the beam length increases and allows us
to compute an averaged probability p of the key-
word nodes in each rank.
Results — The results of our experiment are de-
picted in Table 1, showing that branches of rank
1 contain the most keyword nodes, surpassing the
number in the main branch with rank 0. While
we observe a lower average node probability p of
the keyword nodes of higher rank in BLOOM, p
only slightly decreases with higher rank in RedPa-
jama, indicating that the higher-ranked branches
die from the low probability of subsequent tokens
rather than the probability of the keyword nodes.

Figure 2: Example of applying Algorithm 1 to a BST.



Figure 3: A comparative BST, showing how strongly
punctuation in the input prompt influences the outputs.

In summary, the results demonstrate the impor-
tance of a beam-search-tree-based approach. Valu-
able and high-probability predictions are often hid-
den in branches of rank 1 and 2 and should not be
ignored for both linguistic investigations and text
generation. Our results also show that examining
BSTs with a beam width k > 4 may only rarely
make sense since these branches tend to die early
and hardly contain relevant keywords.

5 Prompting Challenge Scenarios

In the following, we present five example scenarios
of how to use the generAItor workspace to examine
the prompting challenges introduced in Section 2.

5.1 Scenario: Prompt Sensitivity

Model RedPajama-INCITE-Instruct-3B-v1

Prompt Answer the following questions.
Q: What is the current GDP of India?

A:<PH>

<PH> {}, ␣, ␣␣

Challenge Prompt Sensitivity Sens

Task Multi-Instance Multi

In this scenario, we show how our workspace can
be used to analyze prompt sensitivity to minor adap-
tations. In particular, we show the sensitivity of the
RedPajama Instruct model to white spaces added
to the input prompt. We use the prompt Answer the

following questions. Q: What is the current GDP of

India? A:<PH> whereby the <PH> stands for 0–2 con-
catenated white spaces (i.e., the prompt starts with
either , ␣, or ␣␣). As shown in Figure 3, the model
generates three unique BST trees, each containing
a unique text output. The example highlights the
significance of punctuation in the prompt; with the
correct punctuation, the model generates reason-

Figure 4: The BST for the example from Holtzman et al.
(2021), showing how surface form competition affects
the output probabilities.

able answers. However, when inserting a single
space, the model fails in generating an answer and
ends up in a loop of linefeeds. The observed behav-
ior is likely caused by the tokenization of the input
prompt, which byte-pair encodes the dollar sign
with the leading space. Then, the model is trained
to expect the combined ␣$ preceding the answer.
Besides prompt sensitivity, this example also high-
lights the importance of investigating probabilities
of alternative branches, as both branches exiting
the root node of the tree at the top have similar
probabilities, indicating likely hallucinations.

5.2 Scenario: Surface Form Competition

Models gpt2, RedPajama-INCITE-Base-3B-v1

Prompt A human wants to submerge himself in
water, what should he use?
Possible answers are: "Coffee cup",
"Whirlpool bath", "Cup", "Puddle"

Answer: "

Challenge Surface Form Competition SFC

Task Single-Instance Single

In this scenario, we show how our workspace is
used to analyze surface form competition using the
prompt A human wants to submerge himself in water,

what should he use? Possible answers are: "Coffee

cup", "Whirlpool bath", "Cup", "Puddle" Answer: "

from Holtzman et al. (2021). Our tree confirms
that the most likely result is not the correct answer
Whirlpool bath, but the hallucinations Coffee cup

for GPT-2 and Cup for RedPajama Base.

It should be noted that we also tried other exam-
ples from the paper, e.g., the prompt What is the

most populous nation in North America? Valid an

swers: "U.S. of A.", "Canada" Answer: ". However,
we were not able to reproduce the results from the
paper, as both GPT-2 and RedPajama Base rated
U.S. of A. more likely than Canada.



Figure 5: The baseline for the negation analysis: the
token raspberries is not among the top-3 predictions.

5.3 Scenario: Negation

Model RedPajama-INCITE-Instruct-3B-v1

Prompt Answer my questions. Do not use the
word ‘strawberries‘.
Q: Which type of red berries grows
on small, green bushes?
A:

Answer my questions. Do not use the
word ‘raspberries‘.
Q: Which type of red berries grows
on small, green bushes?

A:

Challenge Negation Neg

Task Single-Instance Single

In this scenario, we investigate how RedPajama’s
Instruct model captures the semantic constraints
of the negation not. First, we aim to explore the
most likely prediction for the prompt Answer my

questions. Q: Which type of red berries grows on

small, green bushes? A:. The model predicts multi-
ple berry types including cranberries and strawber-
ries, shown in Figure 5. Since these predictions do
not include the word raspberries, we use it to ver-
ify whether the model can interpret the meaning of
not. Thus, we additionally create a prompt Answer
my questions. Do not use the word ‘raspberries‘.

Q: Which type of red berries grows on small, green

bushes? A:. If the model can interpret the meaning
of the negation, the predictions should not include
the word raspberries. However, the model ranks
this word as the most likely one, see Figure 6, from
which we conclude that the model does not capture
the semantic constraints of the negation.

5.4 Scenario: Quantifiers

Model gpt2, bloom-3b

Prompt <PH> women like to

<PH> All, Some, A few

Challenge Quantifiers Quant

Task Multi-Instance Analysis Multi

In the following, we explore how language mod-

els encode quantifiers such as all, some, and a few.
Gupta (2023) shows that larger generative mod-
els are able to learn the semantic constraints of
these function words better than smaller models or
masked language models (Kalouli et al., 2022). We
explore the ability of GPT-2 and BLOOM to cap-
ture these properties using the prompt <PH> women

like to whereby the <PH> stands for the placeholder
for words all, some, and a few. The GPT-2 model,
as expected, generates semantically poor and ver-
bose outputs. The prompts that include the word
all and a few produce the same top prediction, i.e.,
the model generates a sequence <PH> women like to

think that they are the only ones who have the power

to change the world. As shown in Figure 7, the
predictions of BLOOM differ from GPT-2. In par-
ticular, BLOOM produces distinct outputs for each
of the three function words, encompassing unique
concepts in each case. This confirms the findings
by Gupta (2023) that larger models generate out-
puts that address the quantifiers better. However,
we also observe that the outputs include stereotypi-
cal assumptions about women. Especially for the
quantifier all, the predictions overemphasize the
relevance of aesthetics to the female gender (see
All women like to feel beautiful and confident in

their own skin. in Figure 7). In the following, we
describe in more detail how our approach helps in
investigating biases encoded in the model’s param-
eters.

5.5 Scenario: Bias
Model bloom-3b

Prompt <PH> women like to

<PH> All, Some, A few

Challenge Bias Bias

Task Multi-Instance Multi

As shown in Figure 7, the predictions for the
prompt <PH> women like to with words all, some,
and a few in the place of the placeholder <PH> pro-
duce stereotypical predictions. Although the given

Figure 6: A BST showing how the negative imperative
do not use boost the probability of the unwanted token.



Figure 7: The BSTs for the prompt <PH> women like to with different quantifiers used in the place of the <PH> token.
The user can select wordlists for exploration; the tree is collapsed showing only interesting nodes for the analysis.

input prompt is general, and, thus, theoretically
enables a generation of a wide range of semanti-
cally different outputs, the model focuses on very
specific topics. In particular, in addition to the aes-
thetic aspects associated with the prompt All women

like to, the other prompts produce predictions that
contain properties related to female body character-
istics (see Figure 7).

6 Discussion & Take-Home Messages

In the following, we discuss our work and derive
the most important take-home messages.
Visual, Qualitative Analysis — Our case studies
highlight the importance of inspecting the prompt
output differences visually. Visualizations are of-
ten used to gain detailed insights into specificities
that might become opaque when applying solely
quantitative evaluation approaches (e.g., accuracy
scores). Visualizations can be especially useful to
test assumptions since such tests are cheap to exe-
cute. The gained insights can then be used to define
hypotheses that are evaluated quantitatively.
Comparative Analysis — Comparative analysis,
i.e., the possibility to compare the outputs for mul-
tiple prompts simultaneously is crucial to detect
model limitations. Often, only the relative differ-
ence to another prompt can reveal the cues to which
the model pays attention, to which aspect it is sen-
sitive, and which linguistic properties are not con-
sidered for the prediction making.
Simplicity — Since language is inherently inter-
pretable (Sevastjanova and El-Assady, 2022), indi-
viduals are led to engage in a process of rationaliz-
ing language model outputs. Interestingly, studies

have shown that users tend to place trust in the ex-
planations provided by language models, even in
cases where those explanations are proven to be
incorrect (Lai and Tan, 2019). To address this issue,
our approach exposes the BST, thereby offering an
inherent explanation of the model outputs. The
fundamental principle underlying our approach lies
in the simplicity of both the beam search algorithm
and the underlying data, such as token probabilities.
This simplicity helps prevent the occurrence of mis-
leading rationalizations concerning the generated
predictions.
Flexibility & Abstraction — The analysis of lan-
guage model outputs using the BST enables the
expansion of sequences to variable lengths, which
distinguishes it from template-based analysis. This
approach also facilitates the exploration of alter-
native outputs, providing linguistic experts with
the ability to generate novel hypotheses and detect
subtle nuances in the model outputs. For instance,
it allows for identifying biases present in longer se-
quences rather than being limited to static n-grams.
Overall, the BST-based analysis empowers users to
gain deeper insights into the model’s behavior and
uncover more intricate patterns within its outputs.
To ensure scalability, it is crucial to employ effec-
tive abstraction techniques (such as tree collapse or
keyword highlights) that prevent users from getting
overwhelmed by the vast exploration space.

7 Related Work

In the following, we present related work on lan-
guage modeling, language model explainability,
and beam-search-tree-based visualizations.



7.1 Language Modeling

LMs are probability distributions over word se-
quences and a core component of natural language
processing (NLP) systems (Bengio et al., 2000).
With the emergence of the transformer architec-
ture (Vaswani et al., 2017), LM research shifted
away from using recurrent neural networks (Rumel-
hart et al., 1986) due to the inherent parallelism of
transformers that decreases training times and pro-
vides superior performance in capturing long-term
dependencies as a result of utilizing attention mech-
anisms (Bahdanau et al., 2016).

Among LMs, two main types can be distin-
guished: masked models (e.g., BERT (Devlin et al.,
2019)) and generative models (e.g., GPT-2 (Rad-
ford et al., 2019)). In this paper, we focus on text
generation, which is best tackled by using autore-
gressive generative models that are trained to pre-
dict the next token following an input sequence (Li
et al., 2021). For our case studies, we use GPT-2,
BLOOM (Scao et al., 2023) and RedPajama (Com-
puter, 2023), but note that the models can be ex-
changed by any other causal transformer LM.

7.2 Language Model Explainability

With the rise of large language models, the explain-
ability of their inner workings and the interpretabil-
ity of their outputs expanded the field of explain-
able AI. Matching the four categories as proposed
by Danilevsky et al. (2020), approaches usually
use explainability techniques in conjunction with
a set of operations to enable explainability, and
visualization techniques to convey the operations
to the user. Examples are visualizing saliency to
explain feature importance for local post-hoc (Mul-
lenbach et al., 2018) or training a surrogate model
to allow for taxonomy induction, providing global
explanations (Liu et al., 2018).

As identified by Yuan et al. (2020), explanations
are needed before, during, and after model build-
ing, and it is crucial to identify ways to intuitively
convey model outputs to the user and allow for an
exploration of model outputs. In the context of
visual analytics approaches for the explainability
of deep neural networks, Rosa et al. (2023) survey
common visualization techniques used in visual
analytics systems for explainability and identify a
lack of tree-based visualization techniques. Our
proposed method is based on a representation of
the beam search tree and complements it with a set
of interactions for example-driven, instance-based

investigation of NLP challenges, offering both self-
explaining and post-hoc local explanations.

7.3 Beam-Search-Tree-Based Visualizations

Beam search is an essential part of the decoding
process in LMs. Visualizing and using the cre-
ated beam search tree is, therefore, a possibility to
investigate predictions and allow user interaction
with the tree. Lee et al. (2017) use a basic beam
search tree visualization for the task of neural ma-
chine translation. Their tool visualizes the beam
search decoder with probabilities and allows basic
tree manipulation. Also, for machine translation,
Seq2Seq-Vis was proposed by Strobelt et al. (2018),
which focuses on helping the user debug and find
errors in the translation result. The user can inves-
tigate all steps of the translation pipeline to help
improve the translation result for single instances.
For larger document collections, Munz et al. (2022)
propose a visual analytics system to help identify
and correct single instances and propagate correc-
tions for larger document collections. They also
visualize the beam search tree and allow basic in-
teractions on the node level to correct translations.
Strobelt et al. (2022) introduce GenNI, a system
for collaborative text generation by applying user-
defined constraints to the beam search tree, guiding
the produced outputs.

8 Conclusion

We present a beam-search-centered approach to
explainability for (and comparison of) generative
language models by putting the beam search tree in
the center of the generAItor visual analytics tech-
nique. For this technique, we leverage the beam
search tree to explain the model’s decision process
and compare model outputs. Using our approach,
we find that state-of-the-art LMs handle quantifiers
well, while at the same time producing strongly
biased output. Our investigation of negations high-
lights how it is ignored by the tested models, as in-
cluding a negative imperative in the prompt boosts
the probability of the unwanted output instead of
decreasing it.

Overall, we tackle five prototypical prompting
challenges to highlight how the visual investiga-
tion of probabilities and alternative branches aids
in verifying and generating hypotheses for LM de-
velopers and linguistic researchers alike.



Limitations

Investigation of Proprietary Models — Since
our approach requires full access to the probability
distribution output by the model, it can only be
applied to open-source models. However, similar
approaches could be included in commercial tools
for language generation, as prompt engineering is
gaining relevance (Zamfirescu-Pereira et al., 2023).
Gaining insights into the generated outputs has the
potential to greatly enhance human control.
Comparison Across Language Models — While
our approach allows loading different, transformer-
based models into the workspace, the comparison
of outputs is at present only supported between
trees produced by the model that is currently loaded.
This limitation should be supported by future im-
plementations.
Focus on the English Language — Due to the
prevalence of English training data, most models
are known to provide the best performance with
English text. We, therefore, focus on English text
for the examples and evaluations presented in this
paper. Since the linguistic phenomena we exam-
ine can strongly differ between languages, further
languages should be investigated in future work.
Extension to further Prompt Challenges — The
identified and addressed prototypical challenges
represent current areas of active research. Never-
theless, it is likely that there are further interest-
ing linguistic, socio-linguistic, or data- and model-
specific prompting challenges that can be investi-
gated using the generAItor workspace.
Focus on Text Generation — Other tasks, such
as machine translation or text summarization were
not investigated. While our approach technically
supports these tasks, additional visualizations and
interaction patterns may have to be implemented
to optimally support the user and should be part of
future research.
Explainability Instead of Problem Solving —
While some of our insights indicate model defects
and imply ways to resolve them (e.g., preventing
tokenization issues, see 5.1), this is not the primary
focus of our approach. To find tangible ways to
refine a model, other tools to investigate training
data or the deep learning architecture of the model
are needed.
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